8 research outputs found

    A Systematic Survey on Deep Generative Models for Graph Generation

    Full text link
    Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to its wide range of applications, generative models for graphs have a rich history, which, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for the graph generation. Firstly, the formal definition of deep generative models for the graph generation as well as preliminary knowledge is provided. Secondly, two taxonomies of deep generative models for unconditional, and conditional graph generation respectively are proposed; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted

    GSHOT: Few-shot Generative Modeling of Labeled Graphs

    Full text link
    Deep graph generative modeling has gained enormous attraction in recent years due to its impressive ability to directly learn the underlying hidden graph distribution. Despite their initial success, these techniques, like much of the existing deep generative methods, require a large number of training samples to learn a good model. Unfortunately, large number of training samples may not always be available in scenarios such as drug discovery for rare diseases. At the same time, recent advances in few-shot learning have opened door to applications where available training data is limited. In this work, we introduce the hitherto unexplored paradigm of few-shot graph generative modeling. Towards this, we develop GSHOT, a meta-learning based framework for few-shot labeled graph generative modeling. GSHOT learns to transfer meta-knowledge from similar auxiliary graph datasets. Utilizing these prior experiences, GSHOT quickly adapts to an unseen graph dataset through self-paced fine-tuning. Through extensive experiments on datasets from diverse domains having limited training samples, we establish that GSHOT generates graphs of superior fidelity compared to existing baselines

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods

    Music in Evolution and Evolution in Music

    Get PDF
    Music in Evolution and Evolution in Music by Steven Jan is a comprehensive account of the relationships between evolutionary theory and music. Examining the ‘evolutionary algorithm’ that drives biological and musical-cultural evolution, the book provides a distinctive commentary on how musicality and music can shed light on our understanding of Darwin’s famous theory, and vice-versa. Comprised of seven chapters, with several musical examples, figures and definitions of terms, this original and accessible book is a valuable resource for anyone interested in the relationships between music and evolutionary thought. Jan guides the reader through key evolutionary ideas and the development of human musicality, before exploring cultural evolution, evolutionary ideas in musical scholarship, animal vocalisations, music generated through technology, and the nature of consciousness as an evolutionary phenomenon. A unique examination of how evolutionary thought intersects with music, Music in Evolution and Evolution in Music is essential to our understanding of how and why music arose in our species and why it is such a significant presence in our lives
    corecore