4,355 research outputs found

    Agent-based modelling of air transport demand

    Get PDF
    Constraints such as opening hours or passenger capacities influence travel options that can be offered by an airport and by the connecting airlines. If infrastructure, policy or technological measures modify transport options, then the benefits do not only depend on the technology, but also on possibly heterogeneous user preferences such as desired arrival times or on the availability of alternative travel modes. This paper proposes an agent-based, iterative assignment procedure to model European air traffic and German passenger demand on a microscopic level, capturing individual passenger preferences. Air transport technology is simulated microscopically, i.e. each aircraft is represented as single unit with attached attributes such as departure time, flight duration or seat availability. Trip-chaining and delay propagation can be added. Microsimulation is used to verify and assess passengers’ choices of travel alternatives, where those choices improve over iterations until an agent-based stochastic user equilibrium is reached. This requires fast simulation models, thus, similar to other approaches in air traffic modelling a queue model is used. In contrast to those approaches, the queue model in this work is solved algorithmically. Overall, the approach is suited to analyze, forecast and evaluate the consequences of mid-distance transport measures

    Agent-based Transport Models as a Tool for Evaluating Mobility

    Get PDF
    The transportation system is undergoing fundamental transformations through emerging technologies. Some of these innovations have the potential to contribute to the sustainable transformation of the transportation system, such as electric vehicles (EVs) and shared autonomous electric vehicles (SEAVs). Before enacting policies to support these technologies or limit the use of undesirable ones, decision-makers need to better understand these innovations and the consequences of the policy to be implemented. This insight can be provided with models that are capable of reflecting the dynamics of new mobility, and interactions of travelers with each other and the infrastructure. This thesis describes the development of the Synthetic Swedish Mobility (SySMo) model that represents the travel behavior of an advanced synthetic population of Sweden, using an agent-based framework. The SySMo model provides a scaffold to build decision support tools through which present and future mobility scenarios can be analyzed and thus aid decision-makers in formulating informed policies. The SySMo model comprises a series of modules that utilize a stochastic approach combined with Neural Networks, a machine learning technique to generate a synthetic population and behaviorally realistic daily activity-travel schedules for each agent.The model first generates a synthetic replica of the population characterized by various socio-economic attributes using zone-level statistics and the national travel survey as input data. Then, daily heterogeneous activity patterns showing activity and trip features are assigned to each individual in the population with a high spatio-temporal resolution. To assess the SySMo model performance in each module, in-sample evaluations (i.e., comparing the model outputs with input data to measure the similarity of the results) and out-of-sample (i.e., comparing the model outputs with data never used in the model) evaluations are performed. The current model offers a valuable planning and visualization tool to illustrate mobility patterns of the Swedish population. The methodology can also be broadly applied to other regions with other relevant data and carefully calibrated parameters

    Applied deep learning in intelligent transportation systems and embedding exploration

    Get PDF
    Deep learning techniques have achieved tremendous success in many real applications in recent years and show their great potential in many areas including transportation. Even though transportation becomes increasingly indispensable in people’s daily life, its related problems, such as traffic congestion and energy waste, have not been completely solved, yet some problems have become even more critical. This dissertation focuses on solving the following fundamental problems: (1) passenger demand prediction, (2) transportation mode detection, (3) traffic light control, in the transportation field using deep learning. The dissertation also extends the application of deep learning to an embedding system for visualization and data retrieval. The first part of this dissertation is about a Spatio-TEmporal Fuzzy neural Network (STEF-Net) which accurately predicts passenger demand by incorporating the complex interaction of all known important factors, such as temporal, spatial and external information. Specifically, a convolutional long short-term memory network is employed to simultaneously capture spatio-temporal feature interaction, and a fuzzy neural network to model external factors. A novel feature fusion method with convolution and an attention layer is proposed to keep the temporal relation and discriminative spatio-temporal feature interaction. Experiments on a large-scale real-world dataset show the proposed model outperforms the state-of-the-art approaches. The second part is a light-weight and energy-efficient system which detects transportation modes using only accelerometer sensors in smartphones. Understanding people’s transportation modes is beneficial to many civilian applications, such as urban transportation planning. The system collects accelerometer data in an efficient way and leverages a convolutional neural network to determine transportation modes. Different architectures and classification methods are tested with the proposed convolutional neural network to optimize the system design. Performance evaluation shows that the proposed approach achieves better accuracy than existing work in detecting people’s transportation modes. The third component of this dissertation is a deep reinforcement learning model, based on Q learning, to control the traffic light. Existing inefficient traffic light control causes numerous problems, such as long delay and waste of energy. In the proposed model, the complex traffic scenario is quantified as states by collecting data and dividing the whole intersection into grids. The timing changes of a traffic light are the actions, which are modeled as a high-dimension Markov decision process. The reward is the cumulative waiting time difference between two cycles. To solve the model, a convolutional neural network is employed to map states to rewards, which is further optimized by several components, such as dueling network, target network, double Q-learning network, and prioritized experience replay. The simulation results in Simulation of Urban MObility (SUMO) show the efficiency of the proposed model in controlling traffic lights. The last part of this dissertation studies the hierarchical structure in an embedding system. Traditional embedding approaches associate a real-valued embedding vector with each symbol or data point, which generates storage-inefficient representation and fails to effectively encode the internal semantic structure of data. A regularized autoencoder framework is proposed to learn compact Hierarchical K-way D-dimensional (HKD) discrete embedding of data points, aiming at capturing semantic structures of data. Experimental results on synthetic and real-world datasets show that the proposed HKD embedding can effectively reveal the semantic structure of data via visualization and greatly reduce the search space of nearest neighbor retrieval while preserving high accuracy

    Modeling Lead-vehicle Kinematics For Rear-end Crash Scenario Generation

    Full text link
    The use of virtual safety assessment as the primary method for evaluating vehicle safety technologies has emphasized the importance of crash scenario generation. One of the most common crash types is the rear-end crash, which involves a lead vehicle and a following vehicle. Most studies have focused on the following vehicle, assuming that the lead vehicle maintains a constant acceleration/deceleration before the crash. However, there is no evidence for this premise in the literature. This study aims to address this knowledge gap by thoroughly analyzing and modeling the lead vehicle's behavior as a first step in generating rear-end crash scenarios. Accordingly, the study employed a piecewise linear model to parameterize the speed profiles of lead vehicles, utilizing two rear-end pre-crash/near-crash datasets. These datasets were merged and categorized into multiple sub-datasets; for each one, a multivariate distribution was constructed to represent the corresponding parameters. Subsequently, a synthetic dataset was generated using these distribution models and validated by comparison with the original combined dataset. The results highlight diverse lead-vehicle speed patterns, indicating that a more accurate model, such as the proposed piecewise linear model, is required instead of the conventional constant acceleration/deceleration model. Crashes generated with the proposed models accurately match crash data across the full severity range, surpassing existing lead-vehicle kinematics models in both severity range and accuracy. By providing more realistic speed profiles for the lead vehicle, the model developed in the study contributes to creating realistic rear-end crash scenarios and reconstructing real-life crashes

    Timely Data Delivery in a Realistic Bus Network

    Get PDF
    Abstract—WiFi-enabled buses and stops may form the backbone of a metropolitan delay tolerant network, that exploits nearby communications, temporary storage at stops, and predictable bus mobility to deliver non-real time information. This paper studies the problem of how to route data from its source to its destination in order to maximize the delivery probability by a given deadline. We assume to know the bus schedule, but we take into account that randomness, due to road traffic conditions or passengers boarding and alighting, affects bus mobility. We propose a simple stochastic model for bus arrivals at stops, supported by a study of real-life traces collected in a large urban network. A succinct graph representation of this model allows us to devise an optimal (under our model) single-copy routing algorithm and then extend it to cases where several copies of the same data are permitted. Through an extensive simulation study, we compare the optimal routing algorithm with three other approaches: minimizing the expected traversal time over our graph, minimizing the number of hops a packet can travel, and a recently-proposed heuristic based on bus frequencies. Our optimal algorithm outperforms all of them, but most of the times it essentially reduces to minimizing the expected traversal time. For values of deadlines close to the expected delivery time, the multi-copy extension requires only 10 copies to reach almost the performance of the costly flooding approach. I

    Agent-based Simulation Model for Long-term Carpooling: Effect of Activity Planning Constraints

    Get PDF
    AbstractIn order to commute by carpooling, individuals need to communicate, negotiate and coordinate, and in most cases adapt their daily schedule to enable cooperation. Through negotiation, agents (individuals) can reach complex agreements in an iterative way, which meets the criteria for the successful negotiation. The procedure of negotiation and trip execution in the long-term carpooling consists of a number of steps namely; (i) decision to carpool, (ii) exploration and communication, (iii) negotiation, (iv) coordination and schedule adaptation, (v) long term trip execution (carpooling), (vi) negotiation during carpooling and (vii) carpool termination and exploration for new carpool. This paper presents a conceptual design of an agent-based model (ABM) of a set of candidate carpoolers. A proof of concept implementation is presented. The proposed model is used for simulating the interactions between autonomous agents. The model enables communication to trigger the negotiation process; it measures the effect of pick-drop and shopping activities on the carpooling trips. Carpooling for commuting is simulated: we consider a set of two intermediate trips (home-to-work and work-to-home) for the long-term carpooling. Schedule adaptation during negotiation depends on personal preferences. Trip timing and duration are crucial factors. We carried out a validation study of our results with real data (partial) collected in Flanders, Belgium. Simulation results show the effect of constraining activities on the carpooling trips. The future research will mainly focus on enhancing the mechanisms for communication and negotiation between agents

    Assessing Potential Energy Savings in Household Travel: Methodological and Empirical Considerations of Vehicle Capability Constraints and Multi-day Activity Patterns.

    Full text link
    The lack of multi-day data for household travel and vehicle capability requirements is an impediment to evaluations of energy savings strategies, since 1) travel requirements vary from day-to-day, and 2) energy-saving transportation options often have reduced capability. This work demonstrates a survey methodology and modeling system for evaluating the energy-savings potential of household travel, considering multi-day travel requirements and capability constraints imposed by the available transportation resources. A stochastic scheduling model is introduced – the multi-day Household Activity Schedule Estimator (mPHASE) – which generates synthetic daily schedules based on “fuzzy” descriptions of activity characteristics using a finite-element representation of activity flexibility, coordination among household members, and scheduling conflict resolution. Results of a thirty-household pilot study are presented in which responses to an interactive computer assisted personal interview were used as inputs to the mPHASE model in order to illustrate the feasibility of generating complex, realistic multi-day household schedules. Study vehicles were equipped with digital cameras and GPS data acquisition equipment to validate the model results. The synthetically generated schedules captured an average of 60 percent of household travel distance, and exhibited many of the characteristics of complex household travel, including day-to-day travel variation, and schedule coordination among household members. Future advances in the methodology may improve the model results, such as encouraging more detailed and accurate responses by providing a selection of generated schedules during the interview. Finally, the Constraints-based Transportation Resource Assignment Model (CTRAM) is introduced. Using an enumerative optimization approach, CTRAM determines the energy-minimizing vehicle-to-trip assignment decisions, considering trip schedules, occupancy, and vehicle capability. Designed to accept either actual or synthetic schedules, results of an application of the optimization model to the 2001 and 2009 National Household Travel Survey data show that U.S. households can reduce energy use by 10 percent, on average, by modifying the assignment of existing vehicles to trips. Households in 2009 show a higher tendency to assign vehicles optimally than in 2001, and multi-vehicle households with diverse fleets have greater savings potential, indicating that fleet modification strategies may be effective, particularly under higher energy price conditions.Ph.D.Natural Resources and EnvironmentUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91567/1/kevinb_1.pd
    corecore