6,556 research outputs found

    UMASS_BioNLP at MEDIQA-Chat 2023: Can LLMs generate high-quality synthetic note-oriented doctor-patient conversations?

    Full text link
    This paper presents UMASS_BioNLP team participation in the MEDIQA-Chat 2023 shared task for Task-A and Task-C. We focus especially on Task-C and propose a novel LLMs cooperation system named a doctor-patient loop to generate high-quality conversation data sets. The experiment results demonstrate that our approaches yield reasonable performance as evaluated by automatic metrics such as ROUGE, medical concept recall, BLEU, and Self-BLEU. Furthermore, we conducted a comparative analysis between our proposed method and ChatGPT and GPT-4. This analysis also investigates the potential of utilizing cooperation LLMs to generate high-quality datasets

    Human Evaluation and Correlation with Automatic Metrics in Consultation Note Generation

    Get PDF
    The authors would like to thank Rachel Young and Tom Knoll for supporting the team and hiring the evaluators, Vitalii Zhelezniak for his advice on revising the paper, and Kristian Boda for helping to set up the Stanza+Snomed fact-extraction system.Publisher PD

    Human Evaluation and Correlation with Automatic Metrics in Consultation Note Generation

    Get PDF
    In recent years, machine learning models have rapidly become better at generating clinical consultation notes; yet, there is little work on how to properly evaluate the generated consultation notes to understand the impact they may have on both the clinician using them and the patient's clinical safety. To address this we present an extensive human evaluation study of consultation notes where 5 clinicians (i) listen to 57 mock consultations, (ii) write their own notes, (iii) post-edit a number of automatically generated notes, and (iv) extract all the errors, both quantitative and qualitative. We then carry out a correlation study with 18 automatic quality metrics and the human judgements. We find that a simple, character-based Levenshtein distance metric performs on par if not better than common model-based metrics like BertScore. All our findings and annotations are open-sourced.Comment: To be published in proceedings of ACL 202

    Improving Summarization with Human Edits

    Full text link
    Recent work has shown the promise of learning with human feedback paradigms to produce human-determined high-quality text. Existing works use human feedback to train large language models (LLMs) in general domain abstractive summarization and have obtained summary quality exceeding traditional likelihood training. In this paper, we focus on a less explored form of human feedback -- Human Edits. We propose Sequence Alignment (un)Likelihood Training (SALT), a novel technique to use both the human-edited and model-generated data together in the training loop. In addition, we demonstrate simulating Human Edits with ground truth summaries coming from existing training data -- Imitation edits, along with the model-generated summaries obtained after the training, to reduce the need for expensive human-edit data. In our experiments, we extend human feedback exploration from general domain summarization to medical domain summarization. Our results demonstrate the effectiveness of SALT in improving the summary quality with Human and Imitation Edits. Through additional experiments, we show that SALT outperforms the conventional RLHF method (designed for human preferences) -- DPO, when applied to human-edit data. We hope the evidence in our paper prompts researchers to explore, collect, and better use different human feedback approaches scalably.Comment: To appear in proceedings of the Main Conference on Empirical Methods in Natural Language Processing (EMNLP) 202

    Overview of the Problem List Summarization (ProbSum) 2023 Shared Task on Summarizing Patients' Active Diagnoses and Problems from Electronic Health Record Progress Notes

    Full text link
    The BioNLP Workshop 2023 initiated the launch of a shared task on Problem List Summarization (ProbSum) in January 2023. The aim of this shared task is to attract future research efforts in building NLP models for real-world diagnostic decision support applications, where a system generating relevant and accurate diagnoses will augment the healthcare providers decision-making process and improve the quality of care for patients. The goal for participants is to develop models that generated a list of diagnoses and problems using input from the daily care notes collected from the hospitalization of critically ill patients. Eight teams submitted their final systems to the shared task leaderboard. In this paper, we describe the tasks, datasets, evaluation metrics, and baseline systems. Additionally, the techniques and results of the evaluation of the different approaches tried by the participating teams are summarized.Comment: To appear in the Proceedings of the 5th BioNLP Workshop at AC

    ACI-BENCH: a Novel Ambient Clinical Intelligence Dataset for Benchmarking Automatic Visit Note Generation

    Full text link
    Recent immense breakthroughs in generative models such as in GPT4 have precipitated re-imagined ubiquitous usage of these models in all applications. One area that can benefit by improvements in artificial intelligence (AI) is healthcare. The note generation task from doctor-patient encounters, and its associated electronic medical record documentation, is one of the most arduous time-consuming tasks for physicians. It is also a natural prime potential beneficiary to advances in generative models. However with such advances, benchmarking is more critical than ever. Whether studying model weaknesses or developing new evaluation metrics, shared open datasets are an imperative part of understanding the current state-of-the-art. Unfortunately as clinic encounter conversations are not routinely recorded and are difficult to ethically share due to patient confidentiality, there are no sufficiently large clinic dialogue-note datasets to benchmark this task. Here we present the Ambient Clinical Intelligence Benchmark (ACI-BENCH) corpus, the largest dataset to date tackling the problem of AI-assisted note generation from visit dialogue. We also present the benchmark performances of several common state-of-the-art approaches

    ASR Error Detection via Audio-Transcript entailment

    Full text link
    Despite improved performances of the latest Automatic Speech Recognition (ASR) systems, transcription errors are still unavoidable. These errors can have a considerable impact in critical domains such as healthcare, when used to help with clinical documentation. Therefore, detecting ASR errors is a critical first step in preventing further error propagation to downstream applications. To this end, we propose a novel end-to-end approach for ASR error detection using audio-transcript entailment. To the best of our knowledge, we are the first to frame this problem as an end-to-end entailment task between the audio segment and its corresponding transcript segment. Our intuition is that there should be a bidirectional entailment between audio and transcript when there is no recognition error and vice versa. The proposed model utilizes an acoustic encoder and a linguistic encoder to model the speech and transcript respectively. The encoded representations of both modalities are fused to predict the entailment. Since doctor-patient conversations are used in our experiments, a particular emphasis is placed on medical terms. Our proposed model achieves classification error rates (CER) of 26.2% on all transcription errors and 23% on medical errors specifically, leading to improvements upon a strong baseline by 12% and 15.4%, respectively.Comment: Accepted to Interspeech 202

    WangLab at MEDIQA-Chat 2023: Clinical Note Generation from Doctor-Patient Conversations using Large Language Models

    Full text link
    This paper describes our submission to the MEDIQA-Chat 2023 shared task for automatic clinical note generation from doctor-patient conversations. We report results for two approaches: the first fine-tunes a pre-trained language model (PLM) on the shared task data, and the second uses few-shot in-context learning (ICL) with a large language model (LLM). Both achieve high performance as measured by automatic metrics (e.g. ROUGE, BERTScore) and ranked second and first, respectively, of all submissions to the shared task. Expert human scrutiny indicates that notes generated via the ICL-based approach with GPT-4 are preferred about as often as human-written notes, making it a promising path toward automated note generation from doctor-patient conversations.Comment: Camera-ready submission to ClinicalNLP @ ACL 202
    corecore