760 research outputs found

    On combining the facial movements of a talking head

    Get PDF
    We present work on Obie, an embodied conversational agent framework. An embodied conversational agent, or talking head, consists of three main components. The graphical part consists of a face model and a facial muscle model. Besides the graphical part, we have implemented an emotion model and a mapping from emotions to facial expressions. The animation part of the framework focuses on the combination of different facial movements temporally. In this paper we propose a scheme of combining facial movements on a 3D talking head

    THREE DIMENSIONAL MODELING AND ANIMATION OF FACIAL EXPRESSIONS

    Get PDF
    Facial expression and animation are important aspects of the 3D environment featuring human characters. These animations are frequently used in many kinds of applications and there have been many efforts to increase the realism. Three aspects are still stimulating active research: the detailed subtle facial expressions, the process of rigging a face, and the transfer of an expression from one person to another. This dissertation focuses on the above three aspects. A system for freely designing and creating detailed, dynamic, and animated facial expressions is developed. The presented pattern functions produce detailed and animated facial expressions. The system produces realistic results with fast performance, and allows users to directly manipulate it and see immediate results. Two unique methods for generating real-time, vivid, and animated tears have been developed and implemented. One method is for generating a teardrop that continually changes its shape as the tear drips down the face. The other is for generating a shedding tear, which is a kind of tear that seamlessly connects with the skin as it flows along the surface of the face, but remains an individual object. The methods both broaden CG and increase the realism of facial expressions. A new method to automatically set the bones on facial/head models to speed up the rigging process of a human face is also developed. To accomplish this, vertices that describe the face/head as well as relationships between each part of the face/head are grouped. The average distance between pairs of vertices is used to place the head bones. To set the bones in the face with multi-density, the mean value of the vertices in a group is measured. The time saved with this method is significant. A novel method to produce realistic expressions and animations by transferring an existing expression to a new facial model is developed. The approach is to transform the source model into the target model, which then has the same topology as the source model. The displacement vectors are calculated. Each vertex in the source model is mapped to the target model. The spatial relationships of each mapped vertex are constrained

    Toward a social psychophysics of face communication

    Get PDF
    As a highly social species, humans are equipped with a powerful tool for social communication—the face, which can elicit multiple social perceptions in others due to the rich and complex variations of its movements, morphology, and complexion. Consequently, identifying precisely what face information elicits different social perceptions is a complex empirical challenge that has largely remained beyond the reach of traditional research methods. More recently, the emerging field of social psychophysics has developed new methods designed to address this challenge. Here, we introduce and review the foundational methodological developments of social psychophysics, present recent work that has advanced our understanding of the face as a tool for social communication, and discuss the main challenges that lie ahead

    3D Face Reconstruction from Light Field Images: A Model-free Approach

    Full text link
    Reconstructing 3D facial geometry from a single RGB image has recently instigated wide research interest. However, it is still an ill-posed problem and most methods rely on prior models hence undermining the accuracy of the recovered 3D faces. In this paper, we exploit the Epipolar Plane Images (EPI) obtained from light field cameras and learn CNN models that recover horizontal and vertical 3D facial curves from the respective horizontal and vertical EPIs. Our 3D face reconstruction network (FaceLFnet) comprises a densely connected architecture to learn accurate 3D facial curves from low resolution EPIs. To train the proposed FaceLFnets from scratch, we synthesize photo-realistic light field images from 3D facial scans. The curve by curve 3D face estimation approach allows the networks to learn from only 14K images of 80 identities, which still comprises over 11 Million EPIs/curves. The estimated facial curves are merged into a single pointcloud to which a surface is fitted to get the final 3D face. Our method is model-free, requires only a few training samples to learn FaceLFnet and can reconstruct 3D faces with high accuracy from single light field images under varying poses, expressions and lighting conditions. Comparison on the BU-3DFE and BU-4DFE datasets show that our method reduces reconstruction errors by over 20% compared to recent state of the art

    Design of a Realistic Robotic Head based on Action Coding System

    Get PDF
    Producción CientíficaIn this paper, the development of a robotic head able to move and show di erent emotions is addressed. The movement and emotion generation system has been designed following the human facial muscu- lature. Starting from the Facial Action Coding System (FACS), we have built a 26 actions units model that is able to produce the most relevant movements and emotions of a real human head. The whole work has been carried out in two steps. In the rst step, a mechanical skeleton has been designed and built, in which the di erent actuators have been inserted. In the second step, a two-layered silicon skin has been manu- factured, on which the di erent actuators have been inserted following the real muscle-insertions, for performing the di erent movements and gestures. The developed head has been integrated in a high level be- havioural architecture, and pilot experiments with 10 users regarding emotion recognition and mimicking have been carried out.Junta de Castilla y León (Programa de apoyo a proyectos de investigación-Ref. VA036U14)Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA013A12-2)Ministerio de Economía, Industria y Competitividad (Grant DPI2014-56500-R

    Final Report to NSF of the Standards for Facial Animation Workshop

    Get PDF
    The human face is an important and complex communication channel. It is a very familiar and sensitive object of human perception. The facial animation field has increased greatly in the past few years as fast computer graphics workstations have made the modeling and real-time animation of hundreds of thousands of polygons affordable and almost commonplace. Many applications have been developed such as teleconferencing, surgery, information assistance systems, games, and entertainment. To solve these different problems, different approaches for both animation control and modeling have been developed
    corecore