17,755 research outputs found

    Robustness of the European power grids under intentional attack

    Get PDF
    The power grid defines one of the most important technological networks of our times and sustains our complex society. It has evolved for more than a century into an extremely huge and seemingly robust and well understood system. But it becomes extremely fragile as well, when unexpected, usually minimal, failures turn into unknown dynamical behaviours leading, for example, to sudden and massive blackouts. Here we explore the fragility of the European power grid under the effect of selective node removal. A mean field analysis of fragility against attacks is presented together with the observed patterns. Deviations from the theoretical conditions for network percolation (and fragmentation) under attacks are analysed and correlated with non topological reliability measures.Comment: 7 pages, 4 figure

    Vulnerability Analysis of Modern Electric Grids: A Mathematical Optimization Approach

    Get PDF
    Electrical power must be transmitted through a vast and complicated network of interconnected grids to arrive at one’s fingertips. The US electric grid network and its components are rapidly advancing and adapting to the advent of smart technologies. Production of electricity is transitioning to sustainable processes derived from renewable energy sources like wind and solar power to decrease dependence on nonrenewable fossil fuels. These newly pervasive natures of smart technology and the variable power supply of renewable energy introduce previously unexamined vulnerabilities into the modern electric grid. Disruption of grid operations is not uncommon, and the effects can be economically and societally severe. Thus, a vulnerability analysis can provide decision makers with the ability to characterize points of improvement in the networks they supervise. This thesis performs a vulnerability analysis of electric grid operations including storage. This vulnerability analysis is achieved through a set of numerical experiments on a multi-period optimal power flow model including storage and variable demand. This model resulted in an analysis indicating storage is helpful in increasing resilience in networks with excess generation, no matter how severe the disruption. Networks with constrained generation benefit little, if at all, from storage. This analysis allows us to conclude careful implementation is the best way to improve electric grid security in the face of widespread use of renewable energy and smart technology

    Power Grid Network Evolutions for Local Energy Trading

    Full text link
    The shift towards an energy Grid dominated by prosumers (consumers and producers of energy) will inevitably have repercussions on the distribution infrastructure. Today it is a hierarchical one designed to deliver energy from large scale facilities to end-users. Tomorrow it will be a capillary infrastructure at the medium and Low Voltage levels that will support local energy trading among prosumers. In our previous work, we analyzed the Dutch Power Grid and made an initial analysis of the economic impact topological properties have on decentralized energy trading. In this paper, we go one step further and investigate how different networks topologies and growth models facilitate the emergence of a decentralized market. In particular, we show how the connectivity plays an important role in improving the properties of reliability and path-cost reduction. From the economic point of view, we estimate how the topological evolutions facilitate local electricity distribution, taking into account the main cost ingredient required for increasing network connectivity, i.e., the price of cabling

    MATCASC: A tool to analyse cascading line outages in power grids

    Full text link
    Blackouts in power grids typically result from cascading failures. The key importance of the electric power grid to society encourages further research into sustaining power system reliability and developing new methods to manage the risks of cascading blackouts. Adequate software tools are required to better analyze, understand, and assess the consequences of the cascading failures. This paper presents MATCASC, an open source MATLAB based tool to analyse cascading failures in power grids. Cascading effects due to line overload outages are considered. The applicability of the MATCASC tool is demonstrated by assessing the robustness of IEEE test systems and real-world power grids with respect to cascading failures
    • …
    corecore