5 research outputs found

    Generic camera calibration for omnifocus imaging, depth estimation and a train monitoring system

    Get PDF
    Calibrating an imaging system for its geometric properties is an important step toward understanding the process of image formation and devising techniques to invert this process to decipher interesting properties of the imaged scene. In this dissertation, we propose new optically and physically motivated models for achieving state-of-the-art geometric and photometric camera calibration. The calibration parameters are then applied as input to new algorithms in omnifocus imaging, 3D scene depth from focus and machine vision based intermodal freight train analysis. In the first prat of this dissertation, we present new progress made in the areas of camera calibration with application to omnifocus imaging and 3D scene depth from focus and point spread function calibration. In camera calibration, we propose five new calibration methods for cameras whose imaging model can represented by ideal perspective projection with small distortions due to lens shape (radial distortion) or misaligned lens-sensor configuration (decentering). In the first calibration method, we generalize pupil-centric imaging model to handle arbitrarily rotated lens-sensor configuration, where we consider the sensor tilt to be about the physical optic axis. For such a setting, we derive an analytical solution to linear camera calibration based on collinearity constraint relating the known world points and measured image points assuming no radial distortion. Our second method considers a much simpler case of Gaussian thin-lens imaging model along with non-frontal image sensor and proposes analytical solution to the linear calibration equations derived from collinearity constraint. In the third method, we generalize radial alignment constraint to non-frontal sensor configuration and derive analytical solution to the resulting linear camera calibration equations. In the fourth method, we propose the use of focal stack images of a known checkerboard scene to calibrate cameras having non-frontal sensor. In the fifth method, we show that radial distortion is a result of changing entrance pupil location as a function of incident image rays and propose a collinearity based camera calibration method under this imaging model. Based on this model, we propose a new focus measure for omnifocus imaging and apply it to compute 3D scene depth from focus. We then propose a point spread function calibration method which computes the point spread function (PSF) of a CMOS image sensor using Hadamard patterns displayed on an LCD screen placed at a fixed distance from the sensor. In the second part of the dissertation, we describe a machine vision based train monitoring system, where we propose a motion-based background subtraction method to remove background between the gaps of an inter-modal freight train. The background subtracted image frames are used to compute a panoramic mosaic of the train and compute gap length in pixels. The gap length computed in metric units using the calibration parameters of the video camera allows for analyzing the fuel efficiency of loading pattern of the given inter-modal freight train

    Depth Acquisition from Digital Images

    Get PDF
    Introduction: Depth acquisition from digital images captured with a conventional camera, by analysing focus/defocus cues which are related to depth via an optical model of the camera, is a popular approach to depth-mapping a 3D scene. The majority of methods analyse the neighbourhood of a point in an image to infer its depth, which has disadvantages. A more elegant, but more difficult, solution is to evaluate only the single pixel displaying a point in order to infer its depth. This thesis investigates if a per-pixel method can be implemented without compromising accuracy and generality compared to window-based methods, whilst minimising the number of input images. Method: A geometric optical model of the camera was used to predict the relationship between focus/defocus and intensity at a pixel. Using input images with different focus settings, the relationship was used to identify the focal plane depth (i.e. focus setting) where a point is in best focus, from which the depth of the point can be resolved if camera parameters are known. Two metrics were implemented, one to identify the best focus setting for a point from the discrete input set, and one to fit a model to the input data to estimate the depth of perfect focus of the point on a continuous scale. Results: The method gave generally accurate results for a simple synthetic test scene, with a relatively low number of input images compared to similar methods. When tested on a more complex scene, the method achieved its objectives of separating complex objects from the background by depth, and produced a similar resolution of a complex 3D surface as a similar method which used significantly more input data. Conclusions: The method demonstrates that it is possible to resolve depth on a per-pixel basis without compromising accuracy and generality, and using a similar amount of input data, compared to more traditional window-based methods. In practice, the presented method offers a convenient new option for depth-based image processing applications, as the depth-map is per-pixel, but the process of capturing and preparing images for the method is not too practically cumbersome and could be easily automated unlike other per-pixel methods reviewed. However, the method still suffers from the general limitations of the depth acquisition approach using images from a conventional camera, which limits its use as a general depth acquisition solution beyond specifically depth-based image processing applications

    Generating omnifocus images using graph cuts and a new focus measure

    No full text
    In this paper, we discuss how to generate omnifocus images from a sequence of different focal setting images. We first show that the existing focus measures would encounter difficulty when detecting which frame is most focused for pixels in the regions between intensity edges and uniform areas. Then we propose a new focus measure that could be used to handle this problem. In addition, after computing focus measures for every pixel in all images, we construct a three dimensional (3D) node-capacitated graph and apply a graph cut based optimization method to estimate a spatio-focus surface that minimizes the summation of the new focus measure values on this surface. An omnifocus image can be directly generated from this minimal spatiofocus surface. Experimental results with simulated and real scenes are provided.

    Variational image fusion

    Get PDF
    The main goal of this work is the fusion of multiple images to a single composite that offers more information than the individual input images. We approach those fusion tasks within a variational framework. First, we present iterative schemes that are well-suited for such variational problems and related tasks. They lead to efficient algorithms that are simple to implement and well-parallelisable. Next, we design a general fusion technique that aims for an image with optimal local contrast. This is the key for a versatile method that performs well in many application areas such as multispectral imaging, decolourisation, and exposure fusion. To handle motion within an exposure set, we present the following two-step approach: First, we introduce the complete rank transform to design an optic flow approach that is robust against severe illumination changes. Second, we eliminate remaining misalignments by means of brightness transfer functions that relate the brightness values between frames. Additional knowledge about the exposure set enables us to propose the first fully coupled method that jointly computes an aligned high dynamic range image and dense displacement fields. Finally, we present a technique that infers depth information from differently focused images. In this context, we additionally introduce a novel second order regulariser that adapts to the image structure in an anisotropic way.Das Hauptziel dieser Arbeit ist die Fusion mehrerer Bilder zu einem Einzelbild, das mehr Informationen bietet als die einzelnen Eingangsbilder. Wir verwirklichen diese Fusionsaufgaben in einem variationellen Rahmen. Zunächst präsentieren wir iterative Schemata, die sich gut für solche variationellen Probleme und verwandte Aufgaben eignen. Danach entwerfen wir eine Fusionstechnik, die ein Bild mit optimalem lokalen Kontrast anstrebt. Dies ist der Schlüssel für eine vielseitige Methode, die gute Ergebnisse für zahlreiche Anwendungsbereiche wie Multispektralaufnahmen, Bildentfärbung oder Belichtungsreihenfusion liefert. Um Bewegungen in einer Belichtungsreihe zu handhaben, präsentieren wir folgenden Zweischrittansatz: Zuerst stellen wir die komplette Rangtransformation vor, um eine optische Flussmethode zu entwerfen, die robust gegenüber starken Beleuchtungsänderungen ist. Dann eliminieren wir verbleibende Registrierungsfehler mit der Helligkeitstransferfunktion, welche die Helligkeitswerte zwischen Bildern in Beziehung setzt. Zusätzliches Wissen über die Belichtungsreihe ermöglicht uns, die erste vollständig gekoppelte Methode vorzustellen, die gemeinsam ein registriertes Hochkontrastbild sowie dichte Bewegungsfelder berechnet. Final präsentieren wir eine Technik, die von unterschiedlich fokussierten Bildern Tiefeninformation ableitet. In diesem Kontext stellen wir zusätzlich einen neuen Regularisierer zweiter Ordnung vor, der sich der Bildstruktur anisotrop anpasst

    Variational image fusion

    Get PDF
    The main goal of this work is the fusion of multiple images to a single composite that offers more information than the individual input images. We approach those fusion tasks within a variational framework. First, we present iterative schemes that are well-suited for such variational problems and related tasks. They lead to efficient algorithms that are simple to implement and well-parallelisable. Next, we design a general fusion technique that aims for an image with optimal local contrast. This is the key for a versatile method that performs well in many application areas such as multispectral imaging, decolourisation, and exposure fusion. To handle motion within an exposure set, we present the following two-step approach: First, we introduce the complete rank transform to design an optic flow approach that is robust against severe illumination changes. Second, we eliminate remaining misalignments by means of brightness transfer functions that relate the brightness values between frames. Additional knowledge about the exposure set enables us to propose the first fully coupled method that jointly computes an aligned high dynamic range image and dense displacement fields. Finally, we present a technique that infers depth information from differently focused images. In this context, we additionally introduce a novel second order regulariser that adapts to the image structure in an anisotropic way.Das Hauptziel dieser Arbeit ist die Fusion mehrerer Bilder zu einem Einzelbild, das mehr Informationen bietet als die einzelnen Eingangsbilder. Wir verwirklichen diese Fusionsaufgaben in einem variationellen Rahmen. Zunächst präsentieren wir iterative Schemata, die sich gut für solche variationellen Probleme und verwandte Aufgaben eignen. Danach entwerfen wir eine Fusionstechnik, die ein Bild mit optimalem lokalen Kontrast anstrebt. Dies ist der Schlüssel für eine vielseitige Methode, die gute Ergebnisse für zahlreiche Anwendungsbereiche wie Multispektralaufnahmen, Bildentfärbung oder Belichtungsreihenfusion liefert. Um Bewegungen in einer Belichtungsreihe zu handhaben, präsentieren wir folgenden Zweischrittansatz: Zuerst stellen wir die komplette Rangtransformation vor, um eine optische Flussmethode zu entwerfen, die robust gegenüber starken Beleuchtungsänderungen ist. Dann eliminieren wir verbleibende Registrierungsfehler mit der Helligkeitstransferfunktion, welche die Helligkeitswerte zwischen Bildern in Beziehung setzt. Zusätzliches Wissen über die Belichtungsreihe ermöglicht uns, die erste vollständig gekoppelte Methode vorzustellen, die gemeinsam ein registriertes Hochkontrastbild sowie dichte Bewegungsfelder berechnet. Final präsentieren wir eine Technik, die von unterschiedlich fokussierten Bildern Tiefeninformation ableitet. In diesem Kontext stellen wir zusätzlich einen neuen Regularisierer zweiter Ordnung vor, der sich der Bildstruktur anisotrop anpasst
    corecore