79,657 research outputs found

    Deep Cross-Modal Audio-Visual Generation

    Full text link
    Cross-modal audio-visual perception has been a long-lasting topic in psychology and neurology, and various studies have discovered strong correlations in human perception of auditory and visual stimuli. Despite works in computational multimodal modeling, the problem of cross-modal audio-visual generation has not been systematically studied in the literature. In this paper, we make the first attempt to solve this cross-modal generation problem leveraging the power of deep generative adversarial training. Specifically, we use conditional generative adversarial networks to achieve cross-modal audio-visual generation of musical performances. We explore different encoding methods for audio and visual signals, and work on two scenarios: instrument-oriented generation and pose-oriented generation. Being the first to explore this new problem, we compose two new datasets with pairs of images and sounds of musical performances of different instruments. Our experiments using both classification and human evaluations demonstrate that our model has the ability to generate one modality, i.e., audio/visual, from the other modality, i.e., visual/audio, to a good extent. Our experiments on various design choices along with the datasets will facilitate future research in this new problem space

    VGM-RNN: Recurrent Neural Networks for Video Game Music Generation

    Get PDF
    The recent explosion of interest in deep neural networks has affected and in some cases reinvigorated work in fields as diverse as natural language processing, image recognition, speech recognition and many more. For sequence learning tasks, recurrent neural networks and in particular LSTM-based networks have shown promising results. Recently there has been interest – for example in the research by Google’s Magenta team – in applying so-called “language modeling” recurrent neural networks to musical tasks, including for the automatic generation of original music. In this work we demonstrate our own LSTM-based music language modeling recurrent network. We show that it is able to learn musical features from a MIDI dataset and generate output that is musically interesting while demonstrating features of melody, harmony and rhythm. We source our dataset from VGMusic.com, a collection of user-submitted MIDI transcriptions of video game songs, and attempt to generate output which emulates this kind of music

    Visual to Sound: Generating Natural Sound for Videos in the Wild

    Full text link
    As two of the five traditional human senses (sight, hearing, taste, smell, and touch), vision and sound are basic sources through which humans understand the world. Often correlated during natural events, these two modalities combine to jointly affect human perception. In this paper, we pose the task of generating sound given visual input. Such capabilities could help enable applications in virtual reality (generating sound for virtual scenes automatically) or provide additional accessibility to images or videos for people with visual impairments. As a first step in this direction, we apply learning-based methods to generate raw waveform samples given input video frames. We evaluate our models on a dataset of videos containing a variety of sounds (such as ambient sounds and sounds from people/animals). Our experiments show that the generated sounds are fairly realistic and have good temporal synchronization with the visual inputs.Comment: Project page: http://bvision11.cs.unc.edu/bigpen/yipin/visual2sound_webpage/visual2sound.htm
    • …
    corecore