1,941 research outputs found

    Methods for fast and reliable clustering

    Get PDF

    Robust parameter estimation of density functions under fuzzy interval observations

    Get PDF
    International audienceThis study deals with the derivation of a probabilistic parametric model from interval data using the maximum likelihood principle. In contrast with classical techniques such as the EM algorithm, that define a precise likelihood function by computing the probability of observations viewed as a collection of non-elementary events, our approach presupposes that each imprecise observation underlies a precise one, and that the uncertainty that pervades its observation is epistemic, rather than representing noise. We define an interval-valued likelihood function and apply robust optimisation methods to find a safe plausible estimate of the statistical parameters. The approach is extended to fuzzy data by optimizing the average of lower likelikoods over a collection of data sets obtained from cuts of the fuzzy intervals, as a trade off between optimistic and pessimistic interpretations of fuzzy data. The principles of this method are compared with those of other existing approaches to handle incompleteness of observations, especially the EM technique

    Determine OWA operator weights using kernel density estimation

    Get PDF
    Some subjective methods should divide input values into local clusters before determining the ordered weighted averaging (OWA) operator weights based on the data distribution characteristics of input values. However, the process of clustering input values is complex. In this paper, a novel probability density based OWA (PDOWA) operator is put forward based on the data distribution characteristics of input values. To capture the local cluster structures of input values, the kernel density estimation (KDE) is used to estimate the probability density function (PDF), which fits to the input values. The derived PDF contains the density information of input values, which reflects the importance of input values. Therefore, the input values with high probability densities (PDs) should be assigned with large weights, while the ones with low PDs should be assigned with small weights. Afterwards, the desirable properties of the proposed PDOWA operator are investigated. Finally, the proposed PDOWA operator is applied to handle the multicriteria decision making problem concerning the evaluation of smart phones and it is compared with some existing OWA operators. The comparative analysis shows that the proposed PDOWA operator is simpler and more efficient than the existing OWA operator

    Uncertainty modelling in power spectrum estimation of environmental processes

    Get PDF
    For efficient reliability analysis of buildings and structures, robust load models are required in stochastic dynamics, which can be estimated in particular from environmental processes, such as earthquakes or wind loads. To determine the response behaviour of a dynamic system under such loads, the power spectral density (PSD) function is a widely used tool for identifying the frequency components and corresponding amplitudes of environmental processes. Since the real data records required for this purpose are often subject to aleatory and epistemic uncertainties, and the PSD estimation process itself can induce further uncertainties, a rigorous quantification of these is essential, as otherwise a highly inaccurate load model could be generated which may yield in misleading simulation results. A system behaviour that is actually catastrophic can thus be shifted into an acceptable range, classifying the system as safe even though it is exposed to a high risk of damage or collapse. To address these issues, alternative loading models are proposed using probabilistic and non-deterministic models, that are able to efficiently account for these uncertainties and to model the loadings accordingly. Various methods are used in the generation of these load models, which are selected in particular according to the characteristic of the data and the number of available records. In case multiple data records are available, reliable statistical information can be extracted from a set of similar PSD functions that differ, for instance, only slightly in shape and peak frequency. Based on these statistics, a PSD function model is derived utilising subjective probabilities to capture the epistemic uncertainties and represent this information effectively. The spectral densities are characterised as random variables instead of employing discrete values, and thus the PSD function itself represents a non-stationary random process comprising a range of possible valid PSD functions for a given data set. If only a limited amount of data records is available, it is not possible to derive such reliable statistical information. Therefore, an interval-based approach is proposed that determines only an upper and lower bound and does not rely on any distribution within these bounds. A set of discrete-valued PSD functions is transformed into an interval-valued PSD function by optimising the weights of pre-derived basis functions from a Radial Basis Function Network such that they compose an upper and lower bound that encompasses the data set. Therefore, a range of possible values and system responses are identified rather than discrete values, which are able to quantify the epistemic uncertainties. When generating such a load model using real data records, the problem can arise that the individual records exhibit a high spectral variance in the frequency domain and therefore differ too much from each other, although they appear to be similar in the time domain. A load model derived from these data may not cover the entire spectral range and is therefore not representative. The data are therefore grouped according to their similarity using the Bhattacharyya distance and k-means algorithm, which may generate two or more load models from the entire data set. These can be applied separately to the structure under investigation, leading to more accurate simulation results. This approach can also be used to estimate the spectral similarity of individual data sets in the frequency domain, which is particularly relevant for the load models mentioned above. If the uncertainties are modelled directly in the time signal, it can be a challenging task to transform them efficiently into the frequency domain. Such a signal may consist only of reliable bounds in which the actual signal lies. A method is presented that can automatically propagate this interval uncertainty through the discrete Fourier transform, obtaining the exact bounds on the Fourier amplitude and an estimate of the PSD function. The method allows such an interval signal to be propagated without making assumptions about the dependence and distribution of the error over the time steps. These novel representations of load models are able to quantify epistemic uncertainties inherent in real data records and induced due to the PSD estimation process. The strengths and advantages of these approaches in practice are demonstrated by means of several numerical examples concentrated in the field of stochastic dynamics.FĂŒr eine effiziente ZuverlĂ€ssigkeitsanalyse von GebĂ€uden und Strukturen sind robuste Belastungsmodelle in der stochastischen Dynamik erforderlich, die insbesondere aus Umweltprozessen wie Erdbeben oder Windlasten geschĂ€tzt werden können. Um das Antwortverhalten eines dynamischen Systems unter solchen Belastungen zu bestimmen, ist die Funktion der Leistungsspektraldichte (PSD) ein weit verbreitetes Werkzeug zur Identifizierung der Frequenzkomponenten und der entsprechenden Amplituden von Umweltprozessen. Da die zu diesem Zweck benötigten realen DatensĂ€tze hĂ€ufig mit aleatorischen und epistemischen Unsicherheiten behaftet sind und der PSD-SchĂ€tzprozess selbst weitere Unsicherheiten induzieren kann, ist eine strenge Quantifizierung dieser Unsicherheiten unerlĂ€sslich, da andernfalls ein sehr ungenaues Belastungsmodell erzeugt werden könnte, das zu fehlerhaften Simulationsergebnissen fĂŒhren kann. Ein eigentlich katastrophales Systemverhalten kann so in einen akzeptablen Bereich verschoben werden, so dass das System als sicher eingestuft wird, obwohl es einem hohen Risiko der BeschĂ€digung oder des Zusammenbruchs ausgesetzt ist. Um diese Probleme anzugehen, werden alternative Belastungsmodelle vorgeschlagen, die probabilistische und nicht-deterministische Modelle verwenden, welche in der Lage sind, diese Unsicherheiten effizient zu berĂŒcksichtigen und die Belastungen entsprechend zu modellieren. Bei der Erstellung dieser Lastmodelle werden verschiedene Methoden verwendet, die insbesondere nach dem Charakter der Daten und der Anzahl der verfĂŒgbaren DatensĂ€tze ausgewĂ€hlt werden. Wenn mehrere DatensĂ€tze verfĂŒgbar sind, können zuverlĂ€ssige statistische Informationen aus einer Reihe Ă€hnlicher PSD-Funktionen extrahiert werden, die sich z.B. nur geringfĂŒgig in Form und Spitzenfrequenz unterscheiden. Auf der Grundlage dieser Statistiken wird ein Modell der PSD-Funktion abgeleitet, das subjektive Wahrscheinlichkeiten verwendet, um die epistemischen Unsicherheiten zu erfassen und diese Informationen effektiv darzustellen. Die spektralen Leistungsdichten werden als Zufallsvariablen charakterisiert, anstatt diskrete Werte zu verwenden, somit stellt die PSD-Funktion selbst einen nicht-stationĂ€ren Zufallsprozess dar, der einen Bereich möglicher gĂŒltiger PSD-Funktionen fĂŒr einen gegebenen Datensatz umfasst. Wenn nur eine begrenzte Anzahl von DatensĂ€tzen zur VerfĂŒgung steht, ist es nicht möglich, solche zuverlĂ€ssigen statistischen Informationen abzuleiten. Daher wird ein intervallbasierter Ansatz vorgeschlagen, der nur eine obere und untere Grenze bestimmt und sich nicht auf eine Verteilung innerhalb dieser Grenzen stĂŒtzt. Ein Satz von diskret wertigen PSD-Funktionen wird in eine intervallwertige PSD-Funktion umgewandelt, indem die Gewichte von vorab abgeleiteten Basisfunktionen aus einem Radialbasisfunktionsnetz so optimiert werden, dass sie eine obere und untere Grenze bilden, die den Datensatz umfassen. Damit wird ein Bereich möglicher Werte und Systemreaktionen anstelle diskreter Werte ermittelt, welche in der Lage sind, epistemische Unsicherheiten zu erfassen. Bei der Erstellung eines solchen Lastmodells aus realen DatensĂ€tzen kann das Problem auftreten, dass die einzelnen DatensĂ€tze eine hohe spektrale Varianz im Frequenzbereich aufweisen und sich daher zu stark voneinander unterscheiden, obwohl sie im Zeitbereich Ă€hnlich erscheinen. Ein aus diesen Daten abgeleitetes Lastmodell deckt möglicherweise nicht den gesamten Spektralbereich ab und ist daher nicht reprĂ€sentativ. Die Daten werden daher mit Hilfe der Bhattacharyya-Distanz und des k-means-Algorithmus nach ihrer Ähnlichkeit gruppiert, wodurch zwei oder mehr Belastungsmodelle aus dem gesamten Datensatz erzeugt werden können. Diese können separat auf die zu untersuchende Struktur angewandt werden, was zu genaueren Simulationsergebnissen fĂŒhrt. Dieser Ansatz kann auch zur SchĂ€tzung der spektralen Ähnlichkeit einzelner DatensĂ€tze im Frequenzbereich verwendet werden, was fĂŒr die oben genannten Lastmodelle besonders relevant ist. Wenn die Unsicherheiten direkt im Zeitsignal modelliert werden, kann es eine schwierige Aufgabe sein, sie effizient in den Frequenzbereich zu transformieren. Ein solches Signal kann möglicherweise nur aus zuverlĂ€ssigen Grenzen bestehen, in denen das tatsĂ€chliche Signal liegt. Es wird eine Methode vorgestellt, mit der diese Intervallunsicherheit automatisch durch die diskrete Fourier Transformation propagiert werden kann, um die exakten Grenzen der Fourier-Amplitude und der SchĂ€tzung der PSD-Funktion zu erhalten. Die Methode ermöglicht es, ein solches Intervallsignal zu propagieren, ohne Annahmen ĂŒber die AbhĂ€ngigkeit und Verteilung des Fehlers ĂŒber die Zeitschritte zu treffen. Diese neuartigen Darstellungen von Lastmodellen sind in der Lage, epistemische Unsicherheiten zu quantifizieren, die in realen DatensĂ€tzen enthalten sind und durch den PSD-SchĂ€tzprozess induziert werden. Die StĂ€rken und Vorteile dieser AnsĂ€tze in der Praxis werden anhand mehrerer numerischer Beispiele aus dem Bereich der stochastischen Dynamik demonstriert

    In-Vitro Biological Tissue State Monitoring based on Impedance Spectroscopy

    Get PDF
    The relationship between post-mortem state and changes of biological tissue impedance has been investigated to serve as a basis for developing an in-vitro measurement method for monitoring the freshness of meat. The main challenges thereby are the reproducible measurement of the impedance of biological tissues and the classification method of their type and state. In order to realize reproducible tissue bio-impedance measurements, a suitable sensor taking into account the anisotropy of the biological tissue has been developed. It consists of cylindrical penetrating multi electrodes realizing good contacts between electrodes and the tissue. Experimental measurements have been carried out with different tissues and for a long period of time in order to monitor the state degradation with time. Measured results have been evaluated by means of the modified Fricke-Cole-Cole model. Results are reproducible and correspond to the expected behavior due to aging. An appropriate method for feature extraction and classification has been proposed using model parameters as features as input for classification using neural networks and fuzzy logic. A Multilayer Perceptron neural network (MLP) has been proposed for muscle type computing and the age computing and respectively freshness state of the meat. The designed neural network is able to generalize and to correctly classify new testing data with a high performance index of recognition. It reaches successful results of test equal to 100% for 972 created inputs for each muscle. An investigation of the influence of noise on the classification algorithm shows, that the MLP neural network has the ability to correctly classify the noisy testing inputs especially when the parameter noise is less than 0.6%. The success of classification is 100% for the muscles Longissimus Dorsi (LD) of beef, Semi-Membraneous (SM) of beef and Longissimus Dorsi (LD) of veal and 92.3% for the muscle Rectus Abdominis (RA) of veal. Fuzzy logic provides a successful alternative for easy classification. Using the Gaussian membership functions for the muscle type detection and trapezoidal member function for the classifiers related to the freshness detection, fuzzy logic realized an easy method of classification and generalizes correctly the inputs to the corresponding classes with a high level of recognition equal to 100% for meat type detection and with high accuracy for freshness computing equal to 84.62% for the muscle LD beef, 92.31 % for the muscle RA beef, 100 % for the muscle SM veal and 61.54% for the muscle LD veal.  Auf der Basis von Impedanzspektroskopie wurde ein neuartiges in-vitro-Messverfahren zur Überwachung der Frische von biologischem Gewebe entwickelt. Die wichtigsten Herausforderungen stellen dabei die Reproduzierbarkeit der Impedanzmessung und die Klassifizierung der Gewebeart sowie dessen Zustands dar. FĂŒr die Reproduzierbarkeit von Impedanzmessungen an biologischen Geweben, wurde ein zylindrischer Multielektrodensensor realisiert, der die 2D-Anisotropie des Gewebes berĂŒcksichtigt und einen guten Kontakt zum Gewebe realisiert. Experimentelle Untersuchungen wurden an verschiedenen Geweben ĂŒber einen lĂ€ngeren Zeitraum durchgefĂŒhrt und mittels eines modifizierten Fricke-Cole-Cole-Modells analysiert. Die Ergebnisse sind reproduzierbar und entsprechen dem physikalisch-basierten erwarteten Verhalten. Als Merkmale fĂŒr die Klassifikation wurden die Modellparameter genutzt

    Using Spatial Analysis to Evaluate Fire Activity in a Pine Rockland Ecosystem, Big Pine Key, Florida, USA

    Get PDF
    Pine rocklands are fire-prone ecosystems with limited spatial extent, and have experienced reduced area in the previous decades through habitat conversion and urbanization. The purpose of this dissertation research was to evaluate the historical range of variability of fire activity and spatial patterns of fires in a pine rockland ecosystem in the National Key Deer Refuge (NKDR) on Big Pine Key in the Lower Florida Keys. To investigate the temporal and spatial patterns in fire activity, I (1) evaluated the temporal patterns for fires in my study area in the NKDR, (2) analyzed differences in standard fire history metrics since the advent of land management in the 1950s, (3) mapped the spatial extents of fires that scarred \u3e 25% of the recording trees, (4) investigated how regression relationships fire activity and microtopographic parameters changed with aggregated scale, and (5) calculated global and local indications of spatial autocorrelation in the geographic fire-scar data. The 2011 fire was no more severe than other historic fires in the dataset, and was within a range of expectations for severe fires in the area. The relationships between fire activity and microtopography peaked at approximately 50 m (residual topography p \u3c 0.05; curvature p \u3c 0.10). Finally, spatial autocorrelation analyses found statistically significant (p \u3c 0.01) clustering in the fire-scar data network across the study area, and significant low-clustering (p \u3c 0.05) at the at smaller scales. Recent lack of fire return intervals consistent with pre-management periods confirms the influence that people have had on fire in this ecosystem, and the presence of the neighborhood adjacent to the study area in the south may have dampened fire activity in that area
    • 

    corecore