2,809 research outputs found

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Learning Hypergraph-regularized Attribute Predictors

    Full text link
    We present a novel attribute learning framework named Hypergraph-based Attribute Predictor (HAP). In HAP, a hypergraph is leveraged to depict the attribute relations in the data. Then the attribute prediction problem is casted as a regularized hypergraph cut problem in which HAP jointly learns a collection of attribute projections from the feature space to a hypergraph embedding space aligned with the attribute space. The learned projections directly act as attribute classifiers (linear and kernelized). This formulation leads to a very efficient approach. By considering our model as a multi-graph cut task, our framework can flexibly incorporate other available information, in particular class label. We apply our approach to attribute prediction, Zero-shot and NN-shot learning tasks. The results on AWA, USAA and CUB databases demonstrate the value of our methods in comparison with the state-of-the-art approaches.Comment: This is an attribute learning paper accepted by CVPR 201

    Learning joint feature adaptation for zero-shot recognition

    Full text link
    Zero-shot recognition (ZSR) aims to recognize target-domain data instances of unseen classes based on the models learned from associated pairs of seen-class source and target domain data. One of the key challenges in ZSR is the relative scarcity of source-domain features (e.g. one feature vector per class), which do not fully account for wide variability in target-domain instances. In this paper we propose a novel framework of learning data-dependent feature transforms for scoring similarity between an arbitrary pair of source and target data instances to account for the wide variability in target domain. Our proposed approach is based on optimizing over a parameterized family of local feature displacements that maximize the source-target adaptive similarity functions. Accordingly we propose formulating zero-shot learning (ZSL) using latent structural SVMs to learn our similarity functions from training data. As demonstration we design a specific algorithm under the proposed framework involving bilinear similarity functions and regularized least squares as penalties for feature displacement. We test our approach on several benchmark datasets for ZSR and show significant improvement over the state-of-the-art. For instance, on aP&Y dataset we can achieve 80.89% in terms of recognition accuracy, outperforming the state-of-the-art by 11.15%

    Learning models for semantic classification of insufficient plantar pressure images

    Get PDF
    Establishing a reliable and stable model to predict a target by using insufficient labeled samples is feasible and effective, particularly, for a sensor-generated data-set. This paper has been inspired with insufficient data-set learning algorithms, such as metric-based, prototype networks and meta-learning, and therefore we propose an insufficient data-set transfer model learning method. Firstly, two basic models for transfer learning are introduced. A classification system and calculation criteria are then subsequently introduced. Secondly, a dataset of plantar pressure for comfort shoe design is acquired and preprocessed through foot scan system; and by using a pre-trained convolution neural network employing AlexNet and convolution neural network (CNN)- based transfer modeling, the classification accuracy of the plantar pressure images is over 93.5%. Finally, the proposed method has been compared to the current classifiers VGG, ResNet, AlexNet and pre-trained CNN. Also, our work is compared with known-scaling and shifting (SS) and unknown-plain slot (PS) partition methods on the public test databases: SUN, CUB, AWA1, AWA2, and aPY with indices of precision (tr, ts, H) and time (training and evaluation). The proposed method for the plantar pressure classification task shows high performance in most indices when comparing with other methods. The transfer learning-based method can be applied to other insufficient data-sets of sensor imaging fields

    Cycle-Consistent Deep Generative Hashing for Cross-Modal Retrieval

    Full text link
    In this paper, we propose a novel deep generative approach to cross-modal retrieval to learn hash functions in the absence of paired training samples through the cycle consistency loss. Our proposed approach employs adversarial training scheme to lean a couple of hash functions enabling translation between modalities while assuming the underlying semantic relationship. To induce the hash codes with semantics to the input-output pair, cycle consistency loss is further proposed upon the adversarial training to strengthen the correlations between inputs and corresponding outputs. Our approach is generative to learn hash functions such that the learned hash codes can maximally correlate each input-output correspondence, meanwhile can also regenerate the inputs so as to minimize the information loss. The learning to hash embedding is thus performed to jointly optimize the parameters of the hash functions across modalities as well as the associated generative models. Extensive experiments on a variety of large-scale cross-modal data sets demonstrate that our proposed method achieves better retrieval results than the state-of-the-arts.Comment: To appeared on IEEE Trans. Image Processing. arXiv admin note: text overlap with arXiv:1703.10593 by other author
    • …
    corecore