669 research outputs found

    ASAP: An Automatic Algorithm Selection Approach for Planning

    Get PDF
    Despite the advances made in the last decade in automated planning, no planner out- performs all the others in every known benchmark domain. This observation motivates the idea of selecting different planning algorithms for different domains. Moreover, the planners’ performances are affected by the structure of the search space, which depends on the encoding of the considered domain. In many domains, the performance of a plan- ner can be improved by exploiting additional knowledge, for instance, in the form of macro-operators or entanglements. In this paper we propose ASAP, an automatic Algorithm Selection Approach for Planning that: (i) for a given domain initially learns additional knowledge, in the form of macro-operators and entanglements, which is used for creating different encodings of the given planning domain and problems, and (ii) explores the 2 dimensional space of available algorithms, defined as encodings–planners couples, and then (iii) selects the most promising algorithm for optimising either the runtimes or the quality of the solution plans

    An Automatic Algorithm Selection Approach for Planning

    Get PDF
    Despite the advances made in the last decade in automated planning, no planner outperforms all the others in every known benchmark domain. This observation motivates the idea of selecting different planning algorithms for different domains. Moreover, the planners' performances are affected by the structure of the search space, which depends on the encoding of the considered domain. In many domains, the performance of a planner can be improved by exploiting additional knowledge, extracted in the form of macro-operators or entanglements. In this paper we propose ASAP, an automatic Algorithm Selection Approach for Planning that: (i) for a given domain initially learns additional knowledge, in the form of macro-operators and entanglements, which is used for creating different encodings of the given planning domain and problems, and (ii) explores the 2 dimensional space of available algorithms, defined as encodings--planners couples, and then (iii) selects the most promising algorithm for optimising either the runtimes or the quality of the solution plans

    Using Plan Decomposition for Continuing Plan Optimisation and Macro Generation

    No full text
    This thesis addresses three problems in the field of classical AI planning: decomposing a plan into meaningful subplans, continuing plan quality optimisation, and macro generation for efficient planning. The importance and difficulty of each of these problems is outlined below. (1) Decomposing a plan into meaningful subplans can facilitate a number of postplan generation tasks, including plan quality optimisation and macro generation – the two key concerns of this thesis. However, conventional plan decomposition techniques are often unable to decompose plans because they consider dependencies among steps, rather than subplans. (2) Finding high quality plans for large planning problems is hard. Planners that guarantee optimal, or bounded suboptimal, plan quality often cannot solve them In one experiment with the Genome Edit Distance domain optimal planners solved only 11.5% of problems. Anytime planners promise a way to successively produce better plans over time. However, current anytime planners tend to reach a limit where they stop finding any further improvement, and the plans produced are still very far from the best possible. In the same experiment, the LAMA anytime planner solved all problems but found plans whose average quality is 1.57 times worse than the best known. (3) Finding solutions quickly or even finding any solution for large problems within some resource constraint is also difficult. The best-performing planner in the 2014 international planning competition still failed to solve 29.3% of problems. Re-engineering a domain model by capturing and exploiting structural knowledge in the form of macros has been found very useful in speeding up planners. However, existing planner independent macro generation techniques often fail to capture some promising macro candidates because the constituent actions are not found in sequence in the totally ordered training plans. This thesis contributes to plan decomposition by developing a new plan deordering technique, named block deordering, that allows two subplans to be unordered even when their constituent steps cannot. Based on the block-deordered plan, this thesis further contributes to plan optimisation and macro generation, and their implementations in two systems, named BDPO2 and BloMa. Key to BDPO2 is a decomposition into subproblems of improving parts of the current best plan, rather than the plan as a whole. BDPO2 can be seen as an application of the large neighbourhood search strategy to planning. We use several windowing strategies to extract subplans from the block deordering of the current plan, and on-line learning for applying the most promising subplanners to the most promising subplans. We demonstrate empirically that even starting with the best plans found by other means, BDPO2 is still able to continue improving plan quality, and often produces better plans than other anytime planners when all are given enough runtime. BloMa uses an automatic planner independent technique to extract and filter “self-containe” subplans as macros from the block deordered training plans. These macros represent important longer activities useful to improve planners coverage and efficiency compared to the traditional macro generation approaches

    A Practitioner’s Guide to Applied Sustainability: Initial Explorations

    Get PDF
    For decades, coal has been king in central Appalachia. The people of this region have devoted their lives to providing energy to the nation, fueling the first and second industrial revolutions and providing nearly 40 percent of the energy used in the United States today. Known as one of the unhealthiest communities in the nation, the city of Williamson, located in southern West Virginia, is working to encourage healthy living by diversifying its energy portfolio, providing new economic opportunities for businesses, creating a strong workforce with competitive skill sets, growing local food systems to encourage healthy living, and increasing the quality of life for this community. Operating under the banner of “Sustainable Williamson” and utilizing the emerging concept of applied sustainability, this community is developing a “praxis of theory” approach with a specific focus upon the socio-economic effects of ideology. This thesis explores the theoretical intersections between ideology and new materialism in order to provide existing and emerging practitioners of applied sustainability with an initial framework for developing successful projects in central Appalachia and beyond

    Design Ltd.: Renovated Myths for the Development of Socially Embedded Technologies

    Full text link
    This paper argues that traditional and mainstream mythologies, which have been continually told within the Information Technology domain among designers and advocators of conceptual modelling since the 1960s in different fields of computing sciences, could now be renovated or substituted in the mould of more recent discourses about performativity, complexity and end-user creativity that have been constructed across different fields in the meanwhile. In the paper, it is submitted that these discourses could motivate IT professionals in undertaking alternative approaches toward the co-construction of socio-technical systems, i.e., social settings where humans cooperate to reach common goals by means of mediating computational tools. The authors advocate further discussion about and consolidation of some concepts in design research, design practice and more generally Information Technology (IT) development, like those of: task-artifact entanglement, universatility (sic) of End-User Development (EUD) environments, bricolant/bricoleur end-user, logic of bricolage, maieuta-designers (sic), and laissez-faire method to socio-technical construction. Points backing these and similar concepts are made to promote further discussion on the need to rethink the main assumptions underlying IT design and development some fifty years later the coming of age of software and modern IT in the organizational domain.Comment: This is the peer-unreviewed of a manuscript that is to appear in D. Randall, K. Schmidt, & V. Wulf (Eds.), Designing Socially Embedded Technologies: A European Challenge (2013, forthcoming) with the title "Building Socially Embedded Technologies: Implications on Design" within an EUSSET editorial initiative (www.eusset.eu/

    Verification and Validation of Planning Domain Models

    Get PDF
    The verification and validation of planning domain models is one of the biggest challenges to deploying planning-based automated systems in the real world.The state-of-the-art verification methods of planning domain models are vulnerable to false positives, i.e. counterexamples that are unreachable by sound planners when using the domain under verification during planning tasks. False positives mislead designers into believing correct models are faulty. Consequently, designers needlessly debug correct models to remove these false positives. This process might unnecessarily constrain planning domain models, which can eradicate valid and sometimes required behaviours. Moreover, catching and debugging errors without knowing they are false positives can give verification engineers a false sense of achievement, which might cause them to overlook valid errors.To address this shortfall, the first part of this thesis introduces goal-constrained planning domain model verification, a novel approach that constrains the verification of planning domain models with planning goals to reduce the number of unreachable planning counterexamples. This thesis formally proves the correctness of this method and demonstrates the application of this approach using the model checker Spin and the planner MIPS-XXL. Furthermore, it reports the empirical experiments that validate the feasibility and investigates the performance of the goal-constrained verification approach. The experiments show that not only the goal-constrained verification method is robust against false positive errors, but it also outperforms under-constrained verification tasks in terms of time and memory in some cases.The second part of this thesis investigates the problem of validating the functional equivalence of planning domain models. The need for techniques to validate the functional equivalence of planning domain models has been highlighted in previous research and has applications in model learning, development and extension. Despite the need and importance of proving the functional equivalence of planning domain models, this problem attracted limited research interest.This thesis builds on and extends previous research by proposing a novel approach to validate the functional equivalence of planning domain models. First, this approach employs a planner to remove redundant operators from the given domain models; then, it uses a Satisfiability Modulo Theories (SMT) solver to check if a predicate mapping exists between the two domain models that makes them functionally equivalent. The soundness and completeness of this functional equivalence validation method are formally proven in this thesis.Furthermore, this thesis introduces D-VAL, the first planning domain model automatic validation tool. D-VAL uses the FF planner and the Z3 SMT solver to prove the functional equivalence of planning domain models. Moreover, this thesis demonstrates the feasibility and evaluates the performance of D-VAL against thirteen planning domain models from the International Planning Competition (IPC). Empirical evaluation shows that D-VAL validates the functional equivalence of the most challenging task in less than 43 seconds. These experiments and their results provide a benchmark to evaluate the feasibility and performance of future related work

    Status reports of the fisheries and aquatic resources of Western Australia 2018/19. State of the fisheries

    Get PDF
    The Status Reports of the Fisheries and Aquatic Resources of Western Australia (SRFAR) provide an annual update on the state of the fish stocks and other aquatic resources of Western Australia (WA). These reports outline the most recent assessments of the cumulative risk status for each of the aquatic resources (assets) within WA’s six Bioregions using an Ecosystem Based Fisheries Management (EBFM) approach.https://researchlibrary.agric.wa.gov.au/an_sofar/1011/thumbnail.jp
    • …
    corecore