5,311 research outputs found

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Creating and controlling visual environments using BonVision.

    Get PDF
    Real-time rendering of closed-loop visual environments is important for next-generation understanding of brain function and behaviour, but is often prohibitively difficult for non-experts to implement and is limited to few laboratories worldwide. We developed BonVision as an easy-to-use open-source software for the display of virtual or augmented reality, as well as standard visual stimuli. BonVision has been tested on humans and mice, and is capable of supporting new experimental designs in other animal models of vision. As the architecture is based on the open-source Bonsai graphical programming language, BonVision benefits from native integration with experimental hardware. BonVision therefore enables easy implementation of closed-loop experiments, including real-time interaction with deep neural networks, and communication with behavioural and physiological measurement and manipulation devices

    Visual communication in urban planning and urban design

    Get PDF
    This report documents the current status of visual communication in urban design and planning. Visual communication is examined through discussion of standalone and network media, specifically concentrating on visualisation on the World Wide Web(WWW).Firstly, we examine the use of Solid and Geometric Modelling for visualising urban planning and urban design. This report documents and compares examples of the use of Virtual Reality Modelling Language (VRML) and proprietary WWW based Virtual Reality modelling software. Examples include the modelling of Bath and Glasgow using both VRML 1.0 and 2.0. A review is carried out on the use of Virtual Worldsand their role in visualising urban form within multi-user environments. The use of Virtual Worlds is developed into a case study of the possibilities and limitations of Virtual Internet Design Arenas (ViDAs), an initiative undertaken at the Centre for Advanced Spatial Analysis, University College London. The use of Virtual Worlds and their development towards ViDAs is seen as one of the most important developments in visual communication for urban planning and urban design since the development plan.Secondly, photorealistic media in the process of communicating plans is examined.The process of creating photorealistic media is documented, examples of the Virtual Streetscape and Wired Whitehall Virtual Urban Interface System are provided. The conclusion is drawn that although the use of photo-realistic media on the WWW provides a way to visually communicate planning information, its use is limited. The merging of photorealistic media and solid geometric modelling is reviewed in the creation of Augmented Reality. Augmented Reality is seen to provide an important step forward in the ability to quickly and easily visualise urban planning and urban design information.Thirdly, the role of visual communication of planning data through GIS is examined interms of desktop, three dimensional and Internet based GIS systems. The evolution to Internet GIS is seen as a critical component in the development of virtual cities which will allow urban planners and urban designers to visualise and model the complexity of the built environment in networked virtual reality.Finally a viewpoint is put forward of the Virtual City, linking Internet GIS with photorealistic multi-user Virtual Worlds. At present there are constraints on how far virtual cities can be developed, but a view is provided on how these networked virtual worlds are developing to aid visual communication in urban planning and urban design

    Digital representation of historical globes : methods to make 3D and pseudo-3D models of sixteenth century Mercator globes

    Get PDF
    In this paper, the construction of digital representations of a terrestrial and celestial globe will be discussed. Virtual digital (3D) models play an important role in recent research and publications on cultural heritage. The globes discussed in this paper were made by Gerardus Mercator (1512-1594) in 1541 and 1551. Four techniques for the digital representation are discussed and analysed, all using high-resolution photographs of the globes. These photographs were taken under studio conditions in order to get equal lighting and to avoid unwanted light spots. These lighting conditions are important, since the globes have a highly reflective varnish covering. Processing these images using structure from motion, georeferencing of separate scenes and the combination of the photographs with terrestrial laser scanning data results in true 3D representations of the globes. Besides, pseudo-3D models of these globes were generated using dynamic imaging, which is an extensively used technique for visualisations over the Internet. The four techniques and the consequent results are compared on geometric and radiometric quality, with a special focus on their usefulness for distribution and visualisation during an exhibition in honour of the five hundredth birthday of Gerardus Mercator

    Real-time rendering and simulation of trees and snow

    Get PDF
    Tree models created by an industry used package are exported and the structure extracted in order to procedurally regenerate the geometric mesh, addressing the limitations of the application's standard output. The structure, once extracted, is used to fully generate a high quality skeleton for the tree, individually representing each section in every branch to give the greatest achievable level of freedom of deformation and animation. Around the generated skeleton, a new geometric mesh is wrapped using a single, continuous surface resulting in the removal of intersection based render artefacts. Surface smoothing and enhanced detail is added to the model dynamically using the GPU enhanced tessellation engine. A real-time snow accumulation system is developed to generate snow cover on a dynamic, animated scene. Occlusion techniques are used to project snow accumulating faces and map exposed areas to applied accumulation maps in the form of dynamic textures. Accumulation maps are xed to applied surfaces, allowing moving objects to maintain accumulated snow cover. Mesh generation is performed dynamically during the rendering pass using surface o�setting and tessellation to enhance required detail

    Attack on the clones: managing player perceptions of visual variety and believability in video game crowds

    Get PDF
    Crowds of non-player characters are increasingly common in contemporary video games. It is often the case that individual models are re-used, lowering visual variety in the crowd and potentially affecting realism and believability. This paper explores a number of approaches to increase visual diversity in large game crowds, and discusses a procedural solution for generating diverse non-player character models. This is evaluated using mixed methods, including a “clone spotting” activity and measurement of impact on computational overheads, in order to present a multi-faceted and adjustable solution to increase believability and variety in video game crowds

    Projector-Based Augmentation

    Get PDF
    Projector-based augmentation approaches hold the potential of combining the advantages of well-establishes spatial virtual reality and spatial augmented reality. Immersive, semi-immersive and augmented visualizations can be realized in everyday environments – without the need for special projection screens and dedicated display configurations. Limitations of mobile devices, such as low resolution and small field of view, focus constrains, and ergonomic issues can be overcome in many cases by the utilization of projection technology. Thus, applications that do not require mobility can benefit from efficient spatial augmentations. Examples range from edutainment in museums (such as storytelling projections onto natural stone walls in historical buildings) to architectural visualizations (such as augmentations of complex illumination simulations or modified surface materials in real building structures). This chapter describes projector-camera methods and multi-projector techniques that aim at correcting geometric aberrations, compensating local and global radiometric effects, and improving focus properties of images projected onto everyday surfaces

    Real-time transition texture synthesis for terrains.

    Get PDF
    Depicting the transitions where differing material textures meet on a terrain surface presents a particularly unique set of challenges in the field of real-time rendering. Natural landscapes are inherently irregular and composed of complex interactions between many different material types of effectively endless detail and variation. Although consumer grade graphics hardware is becoming ever increasingly powerful with each successive generation, terrain texturing remains a trade-off between realism and the computational resources available. Technological constraints aside, there is still the challenge of generating the texture resources to represent terrain surfaces which can often span many hundreds or even thousands of square kilometres. To produce such textures by hand is often impractical when operating on a restricted budget of time and funding. This thesis presents two novel algorithms for generating texture transitions in realtime using automated processes. The first algorithm, Feature-Based Probability Blending (FBPB), automates the task of generating transitions between material textures containing salient features. As such features protrude through the terrain surface FBPB ensures that the topography of these features is maintained at transitions in a realistic manner. The transitions themselves are generated using a probabilistic process that also dynamically adds wear and tear to introduce high frequency detail and irregularity at the transition contour. The second algorithm, Dynamic Patch Transitions (DPT), extends FBPB by applying the probabilistic transition approach to material textures that contain no salient features. By breaking up texture space into a series of layered patches that are either rendered or discarded on a probabilistic basis, the contour of the transition is greatly increased in resolution and irregularity. When used in conjunction with high frequency detail techniques, such as alpha masking, DPT is capable of producing endless, detailed, irregular transitions without the need for artistic input

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation
    corecore