544 research outputs found

    Generating Grasp Poses for a High-DOF Gripper Using Neural Networks

    Full text link
    We present a learning-based method for representing grasp poses of a high-DOF hand using neural networks. Due to redundancy in such high-DOF grippers, there exists a large number of equally effective grasp poses for a given target object, making it difficult for the neural network to find consistent grasp poses. We resolve this ambiguity by generating an augmented dataset that covers many possible grasps for each target object and train our neural networks using a consistency loss function to identify a one-to-one mapping from objects to grasp poses. We further enhance the quality of neural-network-predicted grasp poses using a collision loss function to avoid penetrations. We use an object dataset that combines the BigBIRD Database, the KIT Database, the YCB Database, and the Grasp Dataset to show that our method can generate high-DOF grasp poses with higher accuracy than supervised learning baselines. The quality of the grasp poses is on par with the groundtruth poses in the dataset. In addition, our method is robust and can handle noisy object models such as those constructed from multi-view depth images, allowing our method to be implemented on a 25-DOF Shadow Hand hardware platform

    6-DOF GraspNet: Variational Grasp Generation for Object Manipulation

    Full text link
    Generating grasp poses is a crucial component for any robot object manipulation task. In this work, we formulate the problem of grasp generation as sampling a set of grasps using a variational autoencoder and assess and refine the sampled grasps using a grasp evaluator model. Both Grasp Sampler and Grasp Refinement networks take 3D point clouds observed by a depth camera as input. We evaluate our approach in simulation and real-world robot experiments. Our approach achieves 88\% success rate on various commonly used objects with diverse appearances, scales, and weights. Our model is trained purely in simulation and works in the real world without any extra steps. The video of our experiments can be found at: https://research.nvidia.com/publication/2019-10_6-DOF-GraspNet\%3A-VariationalComment: Accepted to ICCV 2019. Extended camera ready version with additional experiment

    The CoSTAR Block Stacking Dataset: Learning with Workspace Constraints

    Full text link
    A robot can now grasp an object more effectively than ever before, but once it has the object what happens next? We show that a mild relaxation of the task and workspace constraints implicit in existing object grasping datasets can cause neural network based grasping algorithms to fail on even a simple block stacking task when executed under more realistic circumstances. To address this, we introduce the JHU CoSTAR Block Stacking Dataset (BSD), where a robot interacts with 5.1 cm colored blocks to complete an order-fulfillment style block stacking task. It contains dynamic scenes and real time-series data in a less constrained environment than comparable datasets. There are nearly 12,000 stacking attempts and over 2 million frames of real data. We discuss the ways in which this dataset provides a valuable resource for a broad range of other topics of investigation. We find that hand-designed neural networks that work on prior datasets do not generalize to this task. Thus, to establish a baseline for this dataset, we demonstrate an automated search of neural network based models using a novel multiple-input HyperTree MetaModel, and find a final model which makes reasonable 3D pose predictions for grasping and stacking on our dataset. The CoSTAR BSD, code, and instructions are available at https://sites.google.com/site/costardataset.Comment: This is a major revision refocusing the topic towards the JHU CoSTAR Block Stacking Dataset, workspace constraints, and a comparison of HyperTrees with hand-designed algorithms. 12 pages, 10 figures, and 3 table

    Learning a visuomotor controller for real world robotic grasping using simulated depth images

    Full text link
    We want to build robots that are useful in unstructured real world applications, such as doing work in the household. Grasping in particular is an important skill in this domain, yet it remains a challenge. One of the key hurdles is handling unexpected changes or motion in the objects being grasped and kinematic noise or other errors in the robot. This paper proposes an approach to learning a closed-loop controller for robotic grasping that dynamically guides the gripper to the object. We use a wrist-mounted sensor to acquire depth images in front of the gripper and train a convolutional neural network to learn a distance function to true grasps for grasp configurations over an image. The training sensor data is generated in simulation, a major advantage over previous work that uses real robot experience, which is costly to obtain. Despite being trained in simulation, our approach works well on real noisy sensor images. We compare our controller in simulated and real robot experiments to a strong baseline for grasp pose detection, and find that our approach significantly outperforms the baseline in the presence of kinematic noise, perceptual errors and disturbances of the object during grasping.Comment: 1st Conference on Robot Learning (CoRL), 13-15 November 2017, Mountain View, C

    Kinematically-Informed Interactive Perception: Robot-Generated 3D Models for Classification

    Full text link
    To be useful in everyday environments, robots must be able to observe and learn about objects. Recent datasets enable progress for classifying data into known object categories; however, it is unclear how to collect reliable object data when operating in cluttered, partially-observable environments. In this paper, we address the problem of building complete 3D models for real-world objects using a robot platform, which can remove objects from clutter for better classification. Furthermore, we are able to learn entirely new object categories as they are encountered, enabling the robot to classify previously unidentifiable objects during future interactions. We build models of grasped objects using simultaneous manipulation and observation, and we guide the processing of visual data using a kinematic description of the robot to combine observations from different view-points and remove background noise. To test our framework, we use a mobile manipulation robot equipped with an RGBD camera to build voxelized representations of unknown objects and then classify them into new categories. We then have the robot remove objects from clutter to manipulate, observe, and classify them in real-time

    RGB Matters: Learning 7-DoF Grasp Poses on Monocular RGBD Images

    Full text link
    General object grasping is an important yet unsolved problem in the field of robotics. Most of the current methods either generate grasp poses with few DoF that fail to cover most of the success grasps, or only take the unstable depth image or point cloud as input which may lead to poor results in some cases. In this paper, we propose RGBD-Grasp, a pipeline that solves this problem by decoupling 7-DoF grasp detection into two sub-tasks where RGB and depth information are processed separately. In the first stage, an encoder-decoder like convolutional neural network Angle-View Net(AVN) is proposed to predict the SO(3) orientation of the gripper at every location of the image. Consequently, a Fast Analytic Searching(FAS) module calculates the opening width and the distance of the gripper to the grasp point. By decoupling the grasp detection problem and introducing the stable RGB modality, our pipeline alleviates the requirement for the high-quality depth image and is robust to depth sensor noise. We achieve state-of-the-art results on GraspNet-1Billion dataset compared with several baselines. Real robot experiments on a UR5 robot with an Intel Realsense camera and a Robotiq two-finger gripper show high success rates for both single object scenes and cluttered scenes. Our code and trained model will be made publicly available.Comment: Accepted by ICRA 202

    Robotic Grasping through Combined Image-Based Grasp Proposal and 3D Reconstruction

    Full text link
    We present a novel approach to robotic grasp planning using both a learned grasp proposal network and a learned 3D shape reconstruction network. Our system generates 6-DOF grasps from a single RGB-D image of the target object, which is provided as input to both networks. By using the geometric reconstruction to refine the the candidate grasp produced by the grasp proposal network, our system is able to accurately grasp both known and unknown objects, even when the grasp location on the object is not visible in the input image. This paper presents the network architectures, training procedures, and grasp refinement method that comprise our system. Experiments demonstrate the efficacy of our system at grasping both known and unknown objects (91% success rate in a physical robot environment, 84% success rate in a simulated environment). We additionally perform ablation studies that show the benefits of combining a learned grasp proposal with geometric reconstruction for grasping, and also show that our system outperforms several baselines in a grasping task.Comment: 7 pages, 7 figure

    Deep Differentiable Grasp Planner for High-DOF Grippers

    Full text link
    We present an end-to-end algorithm for training deep neural networks to grasp novel objects. Our algorithm builds all the essential components of a grasping system using a forward-backward automatic differentiation approach, including the forward kinematics of the gripper, the collision between the gripper and the target object, and the metric for grasp poses. In particular, we show that a generalized Q1 grasp metric is defined and differentiable for inexact grasps generated by a neural network, and the derivatives of our generalized Q1 metric can be computed from a sensitivity analysis of the induced optimization problem. We show that the derivatives of the (self-)collision terms can be efficiently computed from a watertight triangle mesh of low-quality. Altogether, our algorithm allows for the computation of grasp poses for high-DOF grippers in an unsupervised mode with no ground truth data, or it improves the results in a supervised mode using a small dataset. Our new learning algorithm significantly simplifies the data preparation for learning-based grasping systems and leads to higher qualities of learned grasps on common 3D shape datasets [7, 49, 26, 25], achieving a 22% higher success rate on physical hardware and a 0.12 higher value on the Q1 grasp quality metric

    Grasp Pose Detection in Point Clouds

    Full text link
    Recently, a number of grasp detection methods have been proposed that can be used to localize robotic grasp configurations directly from sensor data without estimating object pose. The underlying idea is to treat grasp perception analogously to object detection in computer vision. These methods take as input a noisy and partially occluded RGBD image or point cloud and produce as output pose estimates of viable grasps, without assuming a known CAD model of the object. Although these methods generalize grasp knowledge to new objects well, they have not yet been demonstrated to be reliable enough for wide use. Many grasp detection methods achieve grasp success rates (grasp successes as a fraction of the total number of grasp attempts) between 75% and 95% for novel objects presented in isolation or in light clutter. Not only are these success rates too low for practical grasping applications, but the light clutter scenarios that are evaluated often do not reflect the realities of real world grasping. This paper proposes a number of innovations that together result in a significant improvement in grasp detection performance. The specific improvement in performance due to each of our contributions is quantitatively measured either in simulation or on robotic hardware. Ultimately, we report a series of robotic experiments that average a 93% end-to-end grasp success rate for novel objects presented in dense clutter.Comment: arXiv admin note: text overlap with arXiv:1603.0156

    DDCO: Discovery of Deep Continuous Options for Robot Learning from Demonstrations

    Full text link
    An option is a short-term skill consisting of a control policy for a specified region of the state space, and a termination condition recognizing leaving that region. In prior work, we proposed an algorithm called Deep Discovery of Options (DDO) to discover options to accelerate reinforcement learning in Atari games. This paper studies an extension to robot imitation learning, called Discovery of Deep Continuous Options (DDCO), where low-level continuous control skills parametrized by deep neural networks are learned from demonstrations. We extend DDO with: (1) a hybrid categorical-continuous distribution model to parametrize high-level policies that can invoke discrete options as well continuous control actions, and (2) a cross-validation method that relaxes DDO's requirement that users specify the number of options to be discovered. We evaluate DDCO in simulation of a 3-link robot in the vertical plane pushing a block with friction and gravity, and in two physical experiments on the da Vinci surgical robot, needle insertion where a needle is grasped and inserted into a silicone tissue phantom, and needle bin picking where needles and pins are grasped from a pile and categorized into bins. In the 3-link arm simulation, results suggest that DDCO can take 3x fewer demonstrations to achieve the same reward compared to a baseline imitation learning approach. In the needle insertion task, DDCO was successful 8/10 times compared to the next most accurate imitation learning baseline 6/10. In the surgical bin picking task, the learned policy successfully grasps a single object in 66 out of 99 attempted grasps, and in all but one case successfully recovered from failed grasps by retrying a second time.Comment: Published at CoRL 201
    corecore