208 research outputs found

    Generating functions of bipartite maps on orientable surfaces (extended abstract)

    Get PDF
    International audienceWe compute, for each genus gg ≥ 0, the generating function LLgg ≡ LLgg(tt;pp1,pp2,...) of (labelled) bipartite maps on the orientable surface of genus gg, with control on all face degrees. We exhibit an explicit change of variables such that for each gg, LLgg is a rational function in the new variables, computable by an explicit recursion on the genus. The same holds for the generating function LLgg of rooted bipartite maps. The form of the result is strikingly similar to the Goulden/Jackson/Vakil and Goulden/Guay-Paquet/Novak formulas for the generating functions of classical and monotone Hurwitz numbers respectively, which suggests stronger links between these models. Our result strengthens recent results of Kazarian and Zograf, who studied the case where the number of faces is bounded, in the equivalent formalism of dessins d’enfants. Our proofs borrow some ideas from Eynard’s “topological recursion” that he applied in particular to even-faced maps (unconventionally called “bipartite maps” in his work). However, the present paper requires no previous knowledge of this topic and comes with elementary (complex-analysis-free) proofs written in the perspective of formal power series.Nous calculons, pour chaque genre gg ≥ 0, la sĂ©rie gĂ©nĂ©ratrice LLgg ≡ LLgg(tt;pp1,pp2,...) des cartes bipartites (Ă©tiquetĂ©es) sur la surface orientable de genre gg, avec contrĂŽle des degrĂ©s des faces. On exhibe un changement de variable explicite tel que pour tout gg, LLgg est une fonction rationnelle des nouvelles variables, calculable par une rĂ©currence explicite sur le genre. La mĂȘme chose est vraie de la sĂ©rie gĂ©nĂ©ratrice LLgg des cartes biparties enracinĂ©es. La forme du rĂ©sultat est similaire aux formules de Goulden/Jackson/Vakil et Goulden/Guay-Paquet/Novak pour les sĂ©ries gĂ©nĂ©ratrices de nombres de Hurwitz classiques et monotones, respectivement, ce qui suggĂšre des liens plus forts entre ces modĂšles. Notre rĂ©sultat renforce des rĂ©sultats rĂ©cents de Kazarian et Zograf, qui Ă©tudient le cas oĂč le nombre de faces est bornĂ©, dans le formalisme Ă©quivalent des dessins d’enfants. Nos dĂ©monstrations utilisent deux idĂ©es de la “rĂ©currence topologique” d’Eynard, qu’il a appliquĂ©e notamment aux cartes paires (appelĂ©es de maniĂšre non-standard “cartes biparties” dans son travail). Cela dit, ce papier ne requiert pas de connaissance prĂ©liminaire sur ce sujet, et nos dĂ©monstrations (sans analyse complexe) sont Ă©crites dans le language des sĂ©ries formelles

    A bijection for rooted maps on general surfaces (extended abstract)

    Get PDF
    International audienceWe extend the Marcus-Schaeffer bijection between orientable rooted bipartite quadrangulations (equivalently: rooted maps) and orientable labeled one-face maps to the case of all surfaces, orientable or non-orientable. This general construction requires new ideas and is more delicate than the special orientable case, but carries the same information. It thus gives a uniform combinatorial interpretation of the counting exponent 5(h−1)2\frac{5(h-1)}{2} for both orientable and non-orientable maps of Euler characteristic 2−2h2-2h and of the algebraicity of their generating functions. It also shows the universality of the renormalization factor nn¼ for the metric of maps, on all surfaces: the renormalized profile and radius in a uniform random pointed bipartite quadrangulation of size nn on any fixed surface converge in distribution. Finally, it also opens the way to the study of Brownian surfaces for any compact 2-dimensional manifold.Nous Ă©tendons la bijection de Marcus et Schaeffer entre quadrangulations biparties orientables (de maniĂšre Ă©quivalente: cartes enracinĂ©es) et cartes Ă  une face Ă©tiquetĂ©es orientables Ă  toutes les surfaces, orientables ou non. Cette construction gĂ©nĂ©rale requiert des idĂ©es nouvelles et est plus dĂ©licate que dans le cas particulier orientable, mais permet des utilisations similaires. Elle donne donc une interprĂ©tation combinatoire uniforme de l’exposant de comptage 5(h−1)2\frac{5(h-1)}{2} pour les cartes orientables et non-orientables de caractĂ©ristique d’Euler 2−2h2-2h, et de l’algĂ©bricitĂ© des fonctions gĂ©nĂ©ratrices. Elle montre l’universalitĂ© du facteur de normalisation nn¼ pour la mĂ©trique des cartes, sur toutes les surfaces: le profil et le rayon d’une quadrangulation enracinĂ©e pointĂ©e sur une surface fixĂ©e converge en distribution. Enfin, elle ouvre Ă  la voie Ă  l’étude des surfaces Browniennes pour toute 2-variĂ©tĂ© compacte

    Simple recurrence formulas to count maps on orientable surfaces

    Full text link
    We establish a simple recurrence formula for the number QgnQ_g^n of rooted orientable maps counted by edges and genus. We also give a weighted variant for the generating polynomial Qgn(x)Q_g^n(x) where xx is a parameter taking the number of faces of the map into account, or equivalently a simple recurrence formula for the refined numbers Mgi,jM_g^{i,j} that count maps by genus, vertices, and faces. These formulas give by far the fastest known way of computing these numbers, or the fixed-genus generating functions, especially for large gg. In the very particular case of one-face maps, we recover the Harer-Zagier recurrence formula. Our main formula is a consequence of the KP equation for the generating function of bipartite maps, coupled with a Tutte equation, and it was apparently unnoticed before. It is similar in look to the one discovered by Goulden and Jackson for triangulations, and indeed our method to go from the KP equation to the recurrence formula can be seen as a combinatorial simplification of Goulden and Jackson's approach (together with one additional combinatorial trick). All these formulas have a very combinatorial flavour, but finding a bijective interpretation is currently unsolved.Comment: Version 3: We changed the title once again. We also corrected some misprints, gave another equivalent formulation of the main result in terms of vertices and faces (Thm. 5), and added complements on bivariate generating functions. Version 2: We extended the main result to include the ability to track the number of faces. The title of the paper has been changed accordingl

    Asymptotic enumeration of non-crossing partitions on surfaces

    Get PDF
    We generalize the notion of non-crossing partition on a disk to general surfaces with boundary. For this, we consider a surface S and introduce the number CS(n) of noncrossing partitions of a set of n points laying on the boundary of SPostprint (author's final draft

    Asymptotic enumeration and limit laws for graphs of fixed genus

    Full text link
    It is shown that the number of labelled graphs with n vertices that can be embedded in the orientable surface S_g of genus g grows asymptotically like c(g)n5(g−1)/2−1γnn!c^{(g)}n^{5(g-1)/2-1}\gamma^n n! where c(g)>0c^{(g)}>0, and γ≈27.23\gamma \approx 27.23 is the exponential growth rate of planar graphs. This generalizes the result for the planar case g=0, obtained by Gimenez and Noy. An analogous result for non-orientable surfaces is obtained. In addition, it is proved that several parameters of interest behave asymptotically as in the planar case. It follows, in particular, that a random graph embeddable in S_g has a unique 2-connected component of linear size with high probability
    • 

    corecore