15,165 research outputs found

    Efficient Resource Matching in Heterogeneous Grid Using Resource Vector

    Full text link
    In this paper, a method for efficient scheduling to obtain optimum job throughput in a distributed campus grid environment is presented; Traditional job schedulers determine job scheduling using user and job resource attributes. User attributes are related to current usage, historical usage, user priority and project access. Job resource attributes mainly comprise of soft requirements (compilers, libraries) and hard requirements like memory, storage and interconnect. A job scheduler dispatches jobs to a resource if a job's hard and soft requirements are met by a resource. In current scenario during execution of a job, if a resource becomes unavailable, schedulers are presented with limited options, namely re-queuing job or migrating job to a different resource. Both options are expensive in terms of data and compute time. These situations can be avoided, if the often ignored factor, availability time of a resource in a grid environment is considered. We propose resource rank approach, in which jobs are dispatched to a resource which has the highest rank among all resources that match the job's requirement. The results show that our approach can increase throughput of many serial / monolithic jobs.Comment: 10 page

    Computing server power modeling in a data center: survey,taxonomy and performance evaluation

    Full text link
    Data centers are large scale, energy-hungry infrastructure serving the increasing computational demands as the world is becoming more connected in smart cities. The emergence of advanced technologies such as cloud-based services, internet of things (IoT) and big data analytics has augmented the growth of global data centers, leading to high energy consumption. This upsurge in energy consumption of the data centers not only incurs the issue of surging high cost (operational and maintenance) but also has an adverse effect on the environment. Dynamic power management in a data center environment requires the cognizance of the correlation between the system and hardware level performance counters and the power consumption. Power consumption modeling exhibits this correlation and is crucial in designing energy-efficient optimization strategies based on resource utilization. Several works in power modeling are proposed and used in the literature. However, these power models have been evaluated using different benchmarking applications, power measurement techniques and error calculation formula on different machines. In this work, we present a taxonomy and evaluation of 24 software-based power models using a unified environment, benchmarking applications, power measurement technique and error formula, with the aim of achieving an objective comparison. We use different servers architectures to assess the impact of heterogeneity on the models' comparison. The performance analysis of these models is elaborated in the paper

    Simulating the universe on an intercontinental grid of supercomputers

    Full text link
    Understanding the universe is hampered by the elusiveness of its most common constituent, cold dark matter. Almost impossible to observe, dark matter can be studied effectively by means of simulation and there is probably no other research field where simulation has led to so much progress in the last decade. Cosmological N-body simulations are an essential tool for evolving density perturbations in the nonlinear regime. Simulating the formation of large-scale structures in the universe, however, is still a challenge due to the enormous dynamic range in spatial and temporal coordinates, and due to the enormous computer resources required. The dynamic range is generally dealt with by the hybridization of numerical techniques. We deal with the computational requirements by connecting two supercomputers via an optical network and make them operate as a single machine. This is challenging, if only for the fact that the supercomputers of our choice are separated by half the planet, as one is located in Amsterdam and the other is in Tokyo. The co-scheduling of the two computers and the 'gridification' of the code enables us to achieve a 90% efficiency for this distributed intercontinental supercomputer.Comment: Accepted for publication in IEEE Compute
    • …
    corecore