200 research outputs found

    Straight-Leg Walking Through Underconstrained Whole-Body Control

    Full text link
    We present an approach for achieving a natural, efficient gait on bipedal robots using straightened legs and toe-off. Our algorithm avoids complex height planning by allowing a whole-body controller to determine the straightest possible leg configuration at run-time. The controller solutions are biased towards a straight leg configuration by projecting leg joint angle objectives into the null-space of the other quadratic program motion objectives. To allow the legs to remain straight throughout the gait, toe-off was utilized to increase the kinematic reachability of the legs. The toe-off motion is achieved through underconstraining the foot position, allowing it to emerge naturally. We applied this approach of under-specifying the motion objectives to the Atlas humanoid, allowing it to walk over a variety of terrain. We present both experimental and simulation results and discuss performance limitations and potential improvements.Comment: Submitted to 2018 IEEE International Conference on Robotics and Automatio

    Planning and Control Strategies for Motion and Interaction of the Humanoid Robot COMAN+

    Get PDF
    Despite the majority of robotic platforms are still confined in controlled environments such as factories, thanks to the ever-increasing level of autonomy and the progress on human-robot interaction, robots are starting to be employed for different operations, expanding their focus from uniquely industrial to more diversified scenarios. Humanoid research seeks to obtain the versatility and dexterity of robots capable of mimicking human motion in any environment. With the aim of operating side-to-side with humans, they should be able to carry out complex tasks without posing a threat during operations. In this regard, locomotion, physical interaction with the environment and safety are three essential skills to develop for a biped. Concerning the higher behavioural level of a humanoid, this thesis addresses both ad-hoc movements generated for specific physical interaction tasks and cyclic movements for locomotion. While belonging to the same category and sharing some of the theoretical obstacles, these actions require different approaches: a general high-level task is composed of specific movements that depend on the environment and the nature of the task itself, while regular locomotion involves the generation of periodic trajectories of the limbs. Separate planning and control architectures targeting these aspects of biped motion are designed and developed both from a theoretical and a practical standpoint, demonstrating their efficacy on the new humanoid robot COMAN+, built at Istituto Italiano di Tecnologia. The problem of interaction has been tackled by mimicking the intrinsic elasticity of human muscles, integrating active compliant controllers. However, while state-of-the-art robots may be endowed with compliant architectures, not many can withstand potential system failures that could compromise the safety of a human interacting with the robot. This thesis proposes an implementation of such low-level controller that guarantees a fail-safe behaviour, removing the threat that a humanoid robot could pose if a system failure occurred

    Dynamic whole-body motion generation under rigid contacts and other unilateral constraints

    Get PDF
    The most widely used technique for generating wholebody motions on a humanoid robot accounting for various tasks and constraints is inverse kinematics. Based on the task-function approach, this class of methods enables the coordination of robot movements to execute several tasks in parallel and account for the sensor feedback in real time, thanks to the low computation cost. To some extent, it also enables us to deal with some of the robot constraints (e.g., joint limits or visibility) and manage the quasi-static balance of the robot. In order to fully use the whole range of possible motions, this paper proposes extending the task-function approach to handle the full dynamics of the robot multibody along with any constraint written as equality or inequality of the state and control variables. The definition of multiple objectives is made possible by ordering them inside a strict hierarchy. Several models of contact with the environment can be implemented in the framework. We propose a reduced formulation of the multiple rigid planar contact that keeps a low computation cost. The efficiency of this approach is illustrated by presenting several multicontact dynamic motions in simulation and on the real HRP-2 robot

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Dynamic Walking: Toward Agile and Efficient Bipedal Robots

    Get PDF
    Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review article outlines the end-to-end process of methods which have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced order models that capture essential walking behaviors to hybrid dynamical systems that encode the full order continuous dynamics along with discrete footstrike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiation on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is agile and efficient

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    Motion Planning and Control of Dynamic Humanoid Locomotion

    Get PDF
    Inspired by human, humanoid robots has the potential to become a general-purpose platform that lives along with human. Due to the technological advances in many field, such as actuation, sensing, control and intelligence, it finally enables humanoid robots to possess human comparable capabilities. However, humanoid locomotion is still a challenging research field. The large number of degree of freedom structure makes the system difficult to coordinate online. The presence of various contact constraints and the hybrid nature of locomotion tasks make the planning a harder problem to solve. Template model anchoring approach has been adopted to bridge the gap between simple model behavior and the whole-body motion of humanoid robot. Control policies are first developed for simple template models like Linear Inverted Pendulum Model (LIPM) or Spring Loaded Inverted Pendulum(SLIP), the result controlled behaviors are then been mapped to the whole-body motion of humanoid robot through optimization-based task-space control strategies. Whole-body humanoid control framework has been verified on various contact situations such as unknown uneven terrain, multi-contact scenarios and moving platform and shows its generality and versatility. For walking motion, existing Model Predictive Control approach based on LIPM has been extended to enable the robot to walk without any reference foot placement anchoring. It is kind of discrete version of \u201cwalking without thinking\u201d. As a result, the robot could achieve versatile locomotion modes such as automatic foot placement with single reference velocity command, reactive stepping under large external disturbances, guided walking with small constant external pushing forces, robust walking on unknown uneven terrain, reactive stepping in place when blocked by external barrier. As an extension of this proposed framework, also to increase the push recovery capability of the humanoid robot, two new configurations have been proposed to enable the robot to perform cross-step motions. For more dynamic hopping and running motion, SLIP model has been chosen as the template model. Different from traditional model-based analytical approach, a data-driven approach has been proposed to encode the dynamics of the this model. A deep neural network is trained offline with a large amount of simulation data based on the SLIP model to learn its dynamics. The trained network is applied online to generate reference foot placements for the humanoid robot. Simulations have been performed to evaluate the effectiveness of the proposed approach in generating bio-inspired and robust running motions. The method proposed based on 2D SLIP model can be generalized to 3D SLIP model and the extension has been briefly mentioned at the end

    Optimization-based methods for real-time generation of safe motions in mobile robots

    Get PDF
    Having robots operating in unstructured and dynamically changing environments is a challenging task that requires advanced motion generation approaches that are able to perform in real-time while maintaining the robot and environment safety. The progress in the field of numerical optimization, as well as the development of tailored algorithms, made Nonlinear Model Predictive Control (NMPC) an appealing candidate for real-time motion generation. By considering the robot model as prediction model and through appropriate constraints on the robot states and control inputs, NMPC can enforce safety to the resulting motion in a straightforward way. This thesis addresses the problem of real-time generation of safe motions for mobile robots and mobile manipulators. The different structure of the considered robots introduces different safety risks during the robot motion and so the motion generation problem for each robot is addressed in separate parts of this thesis. In the first part, the problem of motion generation for mobile robots navigating in environments populated by static and/or moving obstacles is considered. For the generation of the desired motion, real-time NMPC is used. We argue that, in order to tackle the risk of collision with the environment, traditional distance-based approaches are incapable of maintaining the robot safety when the NMPC uses relatively short prediction horizons. Instead, we propose two NMPC approaches that employ two alternative collision avoidance constraints. The first proposed NMPC approach is applied to a scenario of safe robot navigation in a human crowd. The NMPC serves as a motion generation module in a safe motion generation framework, complete with a crowd prediction module. The considered collision avoidance constraint is built upon an appropriate Control Barrier Function (CBF). The second NMPC approach is applied to a scenario of robot navigation among moving obstacles, where the dynamics of the considered robot are significant. The proposed collision avoidance constraint is built upon the notion of avoidable collision state, which considers not only the robot-obstacle distance but also their velocity as well as the robot actuation capabilities. The simulation results indicate that both methods are effective and able to maintain the robot safety even in cases where their purely distance-based counterparts fail. The second part of the thesis addresses the problem of safe motion generation for mobile manipulators, called to execute tasks that may require aggressive motions. Here, in addition to the risk of collision with its environment, the robot, consisting of multiple articulated bodies, is also susceptible to self-collisions. Moreover, fast motions can always result to loss of balance. To solve the problem, we propose a real-time NMPC scheme that uses the robot full dynamics, in order to enforce kinodynamic feasibility, while it also considers appropriate collision and self-collision avoidance constraints. To maintain the robot balance we enforce a constraint that restricts the feasible set of robot motions to those generating non-negative moments around the edges of the support polygon. This balance constraint, inherently nonlinear, is linearized using the NMPC solution of the previous iteration. In this way, we facilitate the solution of the NMPC in real-time, without compromising the robot safety. Although the proposed NMPC is effective when applied to MM with low degrees of freedom, when the robot becomes more complex the use of its full dynamic model as a prediction model in an NMPC can lead to unacceptably large computational times that are not compatible with the real-time requirement. However, the use of a simplified model of the robot in an NMPC can compromise the robot safety. For this reason, we propose an optimization-based controller equipped with balance constraints as well as CBF-based collision avoidance constraints. The proposed controller can serve as an intermediate between a motion generation module that does not consider the robot full dynamics and the robot itself in order to ensure that the resulting motion will be at least safe. Simulation results indicate the effectiveness of the proposed method

    Learning-based methods for planning and control of humanoid robots

    Get PDF
    Nowadays, humans and robots are more and more likely to coexist as time goes by. The anthropomorphic nature of humanoid robots facilitates physical human-robot interaction, and makes social human-robot interaction more natural. Moreover, it makes humanoids ideal candidates for many applications related to tasks and environments designed for humans. No matter the application, an ubiquitous requirement for the humanoid is to possess proper locomotion skills. Despite long-lasting research, humanoid locomotion is still far from being a trivial task. A common approach to address humanoid locomotion consists in decomposing its complexity by means of a model-based hierarchical control architecture. To cope with computational constraints, simplified models for the humanoid are employed in some of the architectural layers. At the same time, the redundancy of the humanoid with respect to the locomotion task as well as the closeness of such a task to human locomotion suggest a data-driven approach to learn it directly from experience. This thesis investigates the application of learning-based techniques to planning and control of humanoid locomotion. In particular, both deep reinforcement learning and deep supervised learning are considered to address humanoid locomotion tasks in a crescendo of complexity. First, we employ deep reinforcement learning to study the spontaneous emergence of balancing and push recovery strategies for the humanoid, which represent essential prerequisites for more complex locomotion tasks. Then, by making use of motion capture data collected from human subjects, we employ deep supervised learning to shape the robot walking trajectories towards an improved human-likeness. The proposed approaches are validated on real and simulated humanoid robots. Specifically, on two versions of the iCub humanoid: iCub v2.7 and iCub v3
    corecore