39,747 research outputs found

    LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning

    Full text link
    We present a novel procedural framework to generate an arbitrary number of labeled crowd videos (LCrowdV). The resulting crowd video datasets are used to design accurate algorithms or training models for crowded scene understanding. Our overall approach is composed of two components: a procedural simulation framework for generating crowd movements and behaviors, and a procedural rendering framework to generate different videos or images. Each video or image is automatically labeled based on the environment, number of pedestrians, density, behavior, flow, lighting conditions, viewpoint, noise, etc. Furthermore, we can increase the realism by combining synthetically-generated behaviors with real-world background videos. We demonstrate the benefits of LCrowdV over prior lableled crowd datasets by improving the accuracy of pedestrian detection and crowd behavior classification algorithms. LCrowdV would be released on the WWW

    Geometry-Based Next Frame Prediction from Monocular Video

    Full text link
    We consider the problem of next frame prediction from video input. A recurrent convolutional neural network is trained to predict depth from monocular video input, which, along with the current video image and the camera trajectory, can then be used to compute the next frame. Unlike prior next-frame prediction approaches, we take advantage of the scene geometry and use the predicted depth for generating the next frame prediction. Our approach can produce rich next frame predictions which include depth information attached to each pixel. Another novel aspect of our approach is that it predicts depth from a sequence of images (e.g. in a video), rather than from a single still image. We evaluate the proposed approach on the KITTI dataset, a standard dataset for benchmarking tasks relevant to autonomous driving. The proposed method produces results which are visually and numerically superior to existing methods that directly predict the next frame. We show that the accuracy of depth prediction improves as more prior frames are considered.Comment: To appear in 2017 IEEE Intelligent Vehicles Symposiu

    Disparity map generation based on trapezoidal camera architecture for multiview video

    Get PDF
    Visual content acquisition is a strategic functional block of any visual system. Despite its wide possibilities, the arrangement of cameras for the acquisition of good quality visual content for use in multi-view video remains a huge challenge. This paper presents the mathematical description of trapezoidal camera architecture and relationships which facilitate the determination of camera position for visual content acquisition in multi-view video, and depth map generation. The strong point of Trapezoidal Camera Architecture is that it allows for adaptive camera topology by which points within the scene, especially the occluded ones can be optically and geometrically viewed from several different viewpoints either on the edge of the trapezoid or inside it. The concept of maximum independent set, trapezoid characteristics, and the fact that the positions of cameras (with the exception of few) differ in their vertical coordinate description could very well be used to address the issue of occlusion which continues to be a major problem in computer vision with regards to the generation of depth map
    corecore