341 research outputs found

    Compare and Reweight: Distinctive Image Captioning Using Similar Images Sets

    Full text link
    A wide range of image captioning models has been developed, achieving significant improvement based on popular metrics, such as BLEU, CIDEr, and SPICE. However, although the generated captions can accurately describe the image, they are generic for similar images and lack distinctiveness, i.e., cannot properly describe the uniqueness of each image. In this paper, we aim to improve the distinctiveness of image captions through training with sets of similar images. First, we propose a distinctiveness metric -- between-set CIDEr (CIDErBtw) to evaluate the distinctiveness of a caption with respect to those of similar images. Our metric shows that the human annotations of each image are not equivalent based on distinctiveness. Thus we propose several new training strategies to encourage the distinctiveness of the generated caption for each image, which are based on using CIDErBtw in a weighted loss function or as a reinforcement learning reward. Finally, extensive experiments are conducted, showing that our proposed approach significantly improves both distinctiveness (as measured by CIDErBtw and retrieval metrics) and accuracy (e.g., as measured by CIDEr) for a wide variety of image captioning baselines. These results are further confirmed through a user study

    Language Grounding in Massive Online Data

    Get PDF

    How to Describe Images in a More Funny Way? Towards a Modular Approach to Cross-Modal Sarcasm Generation

    Full text link
    Sarcasm generation has been investigated in previous studies by considering it as a text-to-text generation problem, i.e., generating a sarcastic sentence for an input sentence. In this paper, we study a new problem of cross-modal sarcasm generation (CMSG), i.e., generating a sarcastic description for a given image. CMSG is challenging as models need to satisfy the characteristics of sarcasm, as well as the correlation between different modalities. In addition, there should be some inconsistency between the two modalities, which requires imagination. Moreover, high-quality training data is insufficient. To address these problems, we take a step toward generating sarcastic descriptions from images without paired training data and propose an Extraction-Generation-Ranking based Modular method (EGRM) for cross-model sarcasm generation. Specifically, EGRM first extracts diverse information from an image at different levels and uses the obtained image tags, sentimental descriptive caption, and commonsense-based consequence to generate candidate sarcastic texts. Then, a comprehensive ranking algorithm, which considers image-text relation, sarcasticness, and grammaticality, is proposed to select a final text from the candidate texts. Human evaluation at five criteria on a total of 1200 generated image-text pairs from eight systems and auxiliary automatic evaluation show the superiority of our method

    A-CAP: Anticipation Captioning with Commonsense Knowledge

    Full text link
    Humans possess the capacity to reason about the future based on a sparse collection of visual cues acquired over time. In order to emulate this ability, we introduce a novel task called Anticipation Captioning, which generates a caption for an unseen oracle image using a sparsely temporally-ordered set of images. To tackle this new task, we propose a model called A-CAP, which incorporates commonsense knowledge into a pre-trained vision-language model, allowing it to anticipate the caption. Through both qualitative and quantitative evaluations on a customized visual storytelling dataset, A-CAP outperforms other image captioning methods and establishes a strong baseline for anticipation captioning. We also address the challenges inherent in this task.Comment: Accepted to CVPR 202

    FuseCap: Leveraging Large Language Models to Fuse Visual Data into Enriched Image Captions

    Full text link
    Image captioning is a central task in computer vision which has experienced substantial progress following the advent of vision-language pre-training techniques. In this paper, we highlight a frequently overlooked limitation of captioning models that often fail to capture semantically significant elements. This drawback can be traced back to the text-image datasets; while their captions typically offer a general depiction of image content, they frequently omit salient details. To mitigate this limitation, we propose FuseCap - a novel method for enriching captions with additional visual information, obtained from vision experts, such as object detectors, attribute recognizers, and Optical Character Recognizers (OCR). Our approach fuses the outputs of such vision experts with the original caption using a large language model (LLM), yielding enriched captions that present a comprehensive image description. We validate the effectiveness of the proposed caption enrichment method through both quantitative and qualitative analysis. Our method is then used to curate the training set of a captioning model based BLIP which surpasses current state-of-the-art approaches in generating accurate and detailed captions while using significantly fewer parameters and training data. As additional contributions, we provide a dataset comprising of 12M image-enriched caption pairs and show that the proposed method largely improves image-text retrieval

    Automatic Image Captioning with Style

    Get PDF
    This thesis connects two core topics in machine learning, vision and language. The problem of choice is image caption generation: automatically constructing natural language descriptions of image content. Previous research into image caption generation has focused on generating purely descriptive captions; I focus on generating visually relevant captions with a distinct linguistic style. Captions with style have the potential to ease communication and add a new layer of personalisation. First, I consider naming variations in image captions, and propose a method for predicting context-dependent names that takes into account visual and linguistic information. This method makes use of a large-scale image caption dataset, which I also use to explore naming conventions and report naming conventions for hundreds of animal classes. Next I propose the SentiCap model, which relies on recent advances in artificial neural networks to generate visually relevant image captions with positive or negative sentiment. To balance descriptiveness and sentiment, the SentiCap model dynamically switches between two recurrent neural networks, one tuned for descriptive words and one for sentiment words. As the first published model for generating captions with sentiment, SentiCap has influenced a number of subsequent works. I then investigate the sub-task of modelling styled sentences without images. The specific task chosen is sentence simplification: rewriting news article sentences to make them easier to understand. For this task I design a neural sequence-to-sequence model that can work with limited training data, using novel adaptations for word copying and sharing word embeddings. Finally, I present SemStyle, a system for generating visually relevant image captions in the style of an arbitrary text corpus. A shared term space allows a neural network for vision and content planning to communicate with a network for styled language generation. SemStyle achieves competitive results in human and automatic evaluations of descriptiveness and style. As a whole, this thesis presents two complete systems for styled caption generation that are first of their kind and demonstrate, for the first time, that automatic style transfer for image captions is achievable. Contributions also include novel ideas for object naming and sentence simplification. This thesis opens up inquiries into highly personalised image captions; large scale visually grounded concept naming; and more generally, styled text generation with content control
    • …
    corecore