30 research outputs found

    Question-driven text summarization with extractive-abstractive frameworks

    Get PDF
    Automatic Text Summarisation (ATS) is becoming increasingly important due to the exponential growth of textual content on the Internet. The primary goal of an ATS system is to generate a condensed version of the key aspects in the input document while minimizing redundancy. ATS approaches are extractive, abstractive, or hybrid. The extractive approach selects the most important sentences in the input document(s) and then concatenates them to form the summary. The abstractive approach represents the input document(s) in an intermediate form and then constructs the summary using different sentences than the originals. The hybrid approach combines both the extractive and abstractive approaches. The query-based ATS selects the information that is most relevant to the initial search query. Question-driven ATS is a technique to produce concise and informative answers to specific questions using a document collection. In this thesis, a novel hybrid framework is proposed for question-driven ATS taking advantage of extractive and abstractive summarisation mechanisms. The framework consists of complementary modules that work together to generate an effective summary: (1) discovering appropriate non-redundant sentences as plausible answers using a multi-hop question answering system based on a Convolutional Neural Network (CNN), multi-head attention mechanism and reasoning process; and (2) a novel paraphrasing Generative Adversarial Network (GAN) model based on transformers rewrites the extracted sentences in an abstractive setup. In addition, a fusing mechanism is proposed for compressing the sentence pairs selected by a next sentence prediction model in the paraphrased summary. Extensive experiments on various datasets are performed, and the results show the model can outperform many question-driven and query-based baseline methods. The proposed model is adaptable to generate summaries for the questions in the closed domain and open domain. An online summariser demo is designed based on the proposed model for the industry use to process the technical text

    Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions

    Full text link
    Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy

    Adversarial content manipulation for analyzing and improving model robustness

    Get PDF
    The recent rapid progress in machine learning systems has opened up many real-world applications --- from recommendation engines on web platforms to safety critical systems like autonomous vehicles. A model deployed in the real-world will often encounter inputs far from its training distribution. For example, a self-driving car might come across a black stop sign in the wild. To ensure safe operation, it is vital to quantify the robustness of machine learning models to such out-of-distribution data before releasing them into the real-world. However, the standard paradigm of benchmarking machine learning models with fixed size test sets drawn from the same distribution as the training data is insufficient to identify these corner cases efficiently. In principle, if we could generate all valid variations of an input and measure the model response, we could quantify and guarantee model robustness locally. Yet, doing this with real world data is not scalable. In this thesis, we propose an alternative, using generative models to create synthetic data variations at scale and test robustness of target models to these variations. We explore methods to generate semantic data variations in a controlled fashion across visual and text modalities. We build generative models capable of performing controlled manipulation of data like changing visual context, editing appearance of an object in images or changing writing style of text. Leveraging these generative models we propose tools to study robustness of computer vision systems to input variations and systematically identify failure modes. In the text domain, we deploy these generative models to improve diversity of image captioning systems and perform writing style manipulation to obfuscate private attributes of the user. Our studies quantifying model robustness explore two kinds of input manipulations, model-agnostic and model-targeted. The model-agnostic manipulations leverage human knowledge to choose the kinds of changes without considering the target model being tested. This includes automatically editing images to remove objects not directly relevant to the task and create variations in visual context. Alternatively, in the model-targeted approach the input variations performed are directly adversarially guided by the target model. For example, we adversarially manipulate the appearance of an object in the image to fool an object detector, guided by the gradients of the detector. Using these methods, we measure and improve the robustness of various computer vision systems -- specifically image classification, segmentation, object detection and visual question answering systems -- to semantic input variations.Der schnelle Fortschritt von Methoden des maschinellen Lernens hat viele neue Anwendungen ermöglicht – von Recommender-Systemen bis hin zu sicherheitskritischen Systemen wie autonomen Fahrzeugen. In der realen Welt werden diese Systeme oft mit Eingaben außerhalb der Verteilung der Trainingsdaten konfrontiert. Zum Beispiel könnte ein autonomes Fahrzeug einem schwarzen Stoppschild begegnen. Um sicheren Betrieb zu gewĂ€hrleisten, ist es entscheidend, die Robustheit dieser Systeme zu quantifizieren, bevor sie in der Praxis eingesetzt werden. Aktuell werden diese Modelle auf festen Eingaben von derselben Verteilung wie die Trainingsdaten evaluiert. Allerdings ist diese Strategie unzureichend, um solche AusnahmefĂ€lle zu identifizieren. Prinzipiell könnte die Robustheit “lokal” bestimmt werden, indem wir alle zulĂ€ssigen Variationen einer Eingabe generieren und die Ausgabe des Systems ĂŒberprĂŒfen. Jedoch skaliert dieser Ansatz schlecht zu echten Daten. In dieser Arbeit benutzen wir generative Modelle, um synthetische Variationen von Eingaben zu erstellen und so die Robustheit eines Modells zu ĂŒberprĂŒfen. Wir erforschen Methoden, die es uns erlauben, kontrolliert semantische Änderungen an Bild- und Textdaten vorzunehmen. Wir lernen generative Modelle, die kontrollierte Manipulation von Daten ermöglichen, zum Beispiel den visuellen Kontext zu Ă€ndern, die Erscheinung eines Objekts zu bearbeiten oder den Schreibstil von Text zu Ă€ndern. Basierend auf diesen Modellen entwickeln wir neue Methoden, um die Robustheit von Bilderkennungssystemen bezĂŒglich Variationen in den Eingaben zu untersuchen und Fehlverhalten zu identifizieren. Im Gebiet von Textdaten verwenden wir diese Modelle, um die DiversitĂ€t von sogenannten Automatische Bildbeschriftung-Modellen zu verbessern und Schreibtstil-Manipulation zu erlauben, um private Attribute des Benutzers zu verschleiern. Um die Robustheit von Modellen zu quantifizieren, werden zwei Arten von Eingabemanipulationen untersucht: Modell-agnostische und Modell-spezifische Manipulationen. Modell-agnostische Manipulationen basieren auf menschlichem Wissen, um bestimmte Änderungen auszuwĂ€hlen, ohne das entsprechende Modell miteinzubeziehen. Dies beinhaltet das Entfernen von fĂŒr die Aufgabe irrelevanten Objekten aus Bildern oder Variationen des visuellen Kontextes. In dem alternativen Modell-spezifischen Ansatz werden Änderungen vorgenommen, die fĂŒr das Modell möglichst ungĂŒnstig sind. Zum Beispiel Ă€ndern wir die Erscheinung eines Objekts um ein Modell der Objekterkennung tĂ€uschen. Dies ist durch den Gradienten des Modells möglich. Mithilfe dieser Werkzeuge können wir die Robustheit von Systemen zur Bildklassifizierung oder -segmentierung, Objekterkennung und Visuelle Fragenbeantwortung quantifizieren und verbessern

    Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning

    Get PDF
    Developing artificial learning systems that can understand and generate natural language has been one of the long-standing goals of artificial intelligence. Recent decades have witnessed an impressive progress on both of these problems, giving rise to a new family of approaches. Especially, the advances in deep learning over the past couple of years have led to neural approaches to natural language generation (NLG). These methods combine generative language learning techniques with neural-networks based frameworks. With a wide range of applications in natural language processing, neural NLG (NNLG) is a new and fast growing field of research. In this state-of-the-art report, we investigate the recent developments and applications of NNLG in its full extent from a multidimensional view, covering critical perspectives such as multimodality, multilinguality, controllability and learning strategies. We summarize the fundamental building blocks of NNLG approaches from these aspects and provide detailed reviews of commonly used preprocessing steps and basic neural architectures. This report also focuses on the seminal applications of these NNLG models such as machine translation, description generation, automatic speech recognition, abstractive summarization, text simplification, question answering and generation, and dialogue generation. Finally, we conclude with a thorough discussion of the described frameworks by pointing out some open research directions.This work has been partially supported by the European Commission ICT COST Action “Multi-task, Multilingual, Multi-modal Language Generation” (CA18231). AE was supported by BAGEP 2021 Award of the Science Academy. EE was supported in part by TUBA GEBIP 2018 Award. BP is in in part funded by Independent Research Fund Denmark (DFF) grant 9063-00077B. IC has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 838188. EL is partly funded by Generalitat Valenciana and the Spanish Government throught projects PROMETEU/2018/089 and RTI2018-094649-B-I00, respectively. SMI is partly funded by UNIRI project uniri-drustv-18-20. GB is partly supported by the Ministry of Innovation and the National Research, Development and Innovation Office within the framework of the Hungarian Artificial Intelligence National Laboratory Programme. COT is partially funded by the Romanian Ministry of European Investments and Projects through the Competitiveness Operational Program (POC) project “HOLOTRAIN” (grant no. 29/221 ap2/07.04.2020, SMIS code: 129077) and by the German Academic Exchange Service (DAAD) through the project “AWAKEN: content-Aware and netWork-Aware faKE News mitigation” (grant no. 91809005). ESA is partially funded by the German Academic Exchange Service (DAAD) through the project “Deep-Learning Anomaly Detection for Human and Automated Users Behavior” (grant no. 91809358)

    Sparsity-aware neural user behavior modeling in online interaction platforms

    Get PDF
    Modern online platforms offer users an opportunity to participate in a variety of content-creation, social networking, and shopping activities. With the rapid proliferation of such online services, learning data-driven user behavior models is indispensable to enable personalized user experiences. Recently, representation learning has emerged as an effective strategy for user modeling, powered by neural networks trained over large volumes of interaction data. Despite their enormous potential, we encounter the unique challenge of data sparsity for a vast majority of entities, e.g., sparsity in ground-truth labels for entities and in entity-level interactions (cold-start users, items in the long-tail, and ephemeral groups). In this dissertation, we develop generalizable neural representation learning frameworks for user behavior modeling designed to address different sparsity challenges across applications. Our problem settings span transductive and inductive learning scenarios, where transductive learning models entities seen during training and inductive learning targets entities that are only observed during inference. We leverage different facets of information reflecting user behavior (e.g., interconnectivity in social networks, temporal and attributed interaction information) to enable personalized inference at scale. Our proposed models are complementary to concurrent advances in neural architectural choices and are adaptive to the rapid addition of new applications in online platforms. First, we examine two transductive learning settings: inference and recommendation in graph-structured and bipartite user-item interactions. In chapter 3, we formulate user profiling in social platforms as semi-supervised learning over graphs given sparse ground-truth labels for node attributes. We present a graph neural network framework that exploits higher-order connectivity structures (network motifs) to learn attributed structural roles of nodes that identify structurally similar nodes with co-varying local attributes. In chapter 4, we design neural collaborative filtering models for few-shot recommendations over user-item interactions. To address item interaction sparsity due to heavy-tailed distributions, our proposed meta-learning framework learns-to-recommend few-shot items by knowledge transfer from arbitrary base recommenders. We show that our framework consistently outperforms state-of-art approaches on overall recommendation (by 5% Recall) while achieving significant gains (of 60-80% Recall) for tail items with fewer than 20 interactions. Next, we explored three inductive learning settings: modeling spread of user-generated content in social networks; item recommendations for ephemeral groups; and friend ranking in large-scale social platforms. In chapter 5, we focus on diffusion prediction in social networks where a vast population of users rarely post content. We introduce a deep generative modeling framework that models users as probability distributions in the latent space with variational priors parameterized by graph neural networks. Our approach enables massive performance gains (over 150% recall) for users with sparse activities while being faster than state-of-the-art neural models by an order of magnitude. In chapter 6, we examine item recommendations for ephemeral groups with limited or no historical interactions together. To overcome group interaction sparsity, we present self-supervised learning strategies that exploit the preference co-variance in observed group memberships for group recommender training. Our framework achieves significant performance gains (over 30% NDCG) over prior state-of-the-art group recommendation models. In chapter 7, we introduce multi-modal inference with graph neural networks that captures knowledge from multiple feature modalities and user interactions for multi-faceted friend ranking. Our approach achieves notable higher performance gains for critical populations of less-active and low degree users
    corecore