18,589 research outputs found

    Constraint-Based Heuristic On-line Test Generation from Non-deterministic I/O EFSMs

    Full text link
    We are investigating on-line model-based test generation from non-deterministic output-observable Input/Output Extended Finite State Machine (I/O EFSM) models of Systems Under Test (SUTs). We propose a novel constraint-based heuristic approach (Heuristic Reactive Planning Tester (xRPT)) for on-line conformance testing non-deterministic SUTs. An indicative feature of xRPT is the capability of making reasonable decisions for achieving the test goals in the on-line testing process by using the results of off-line bounded static reachability analysis based on the SUT model and test goal specification. We present xRPT in detail and make performance comparison with other existing search strategies and approaches on examples with varying complexity.Comment: In Proceedings MBT 2012, arXiv:1202.582

    A Primer on Causality in Data Science

    Get PDF
    Many questions in Data Science are fundamentally causal in that our objective is to learn the effect of some exposure, randomized or not, on an outcome interest. Even studies that are seemingly non-causal, such as those with the goal of prediction or prevalence estimation, have causal elements, including differential censoring or measurement. As a result, we, as Data Scientists, need to consider the underlying causal mechanisms that gave rise to the data, rather than simply the pattern or association observed in those data. In this work, we review the 'Causal Roadmap' of Petersen and van der Laan (2014) to provide an introduction to some key concepts in causal inference. Similar to other causal frameworks, the steps of the Roadmap include clearly stating the scientific question, defining of the causal model, translating the scientific question into a causal parameter, assessing the assumptions needed to express the causal parameter as a statistical estimand, implementation of statistical estimators including parametric and semi-parametric methods, and interpretation of our findings. We believe that using such a framework in Data Science will help to ensure that our statistical analyses are guided by the scientific question driving our research, while avoiding over-interpreting our results. We focus on the effect of an exposure occurring at a single time point and highlight the use of targeted maximum likelihood estimation (TMLE) with Super Learner.Comment: 26 pages (with references); 4 figure

    Property-Based Testing - The ProTest Project

    Get PDF
    The ProTest project is an FP7 STREP on property based testing. The purpose of the project is to develop software engineering approaches to improve reliability of service-oriented networks; support fault-finding and diagnosis based on specified properties of the system. And to do so we will build automated tools that will generate and run tests, monitor execution at run-time, and log events for analysis. The Erlang / Open Telecom Platform has been chosen as our initial implementation vehicle due to its robustness and reliability within the telecoms sector. It is noted for its success in the ATM telecoms switches by Ericsson, one of the project partners, as well as for multiple other uses such as in facebook, yahoo etc. In this paper we provide an overview of the project goals, as well as detailing initial progress in developing property based testing techniques and tools for the concurrent functional programming language Erlang

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Formal Verification of the Adversarial Robustness Property of Deep Neural Networks Through Dimension Reduction Heuristics, Refutation-based Abstraction, and Partitioning

    Get PDF
    Neural networks are tools that are often used to perform functions such as object recognition in images, speech-to-text, and general data classification. Because neural networks have been successful at approximating these functions that are difficult to explicitly write, they are seeing increased usage in fields such as autonomous driving, airplane collision avoidance systems, and other safety-critical applications. Due to the risks involved with safety-critical systems, it is important to provide guarantees about the networks performance under certain conditions. As an example, it is critically important that self driving cars with neural network based vision systems correctly identify pedestrians 100% of the time. The ability to identify pedestrians correctly is considered a safety property of the neural network and this property must be rigorously verified to produce a guarantee of safe functionality. This thesis focuses on a safety property of neural networks called local adversarial robustness. Often, small changes or noise on the input of the network can cause it to behave unexpectedly. Water droplets on the lens of a camera that feeds images to a network for classification may render the classification output useless. When a network is locally robust to adversarial inputs it means that small changes to a known input do not cause the network to behave erratically. Due to some characteristics of neural networks, safety properties like local adversarial robustness are extremely difficult to verify. For example, changing the color of the pedestrians shirt to blue should not effect the network’s classification. What about if the shirt is red? What about all the other colors? What about all the possible color combinations of shirts and pants? The complexity of verifying these safety properties grows very quickly. This thesis proposes three novel methods for tackling some of the challenges related to verifying safety properties of neural networks. The first is a method to strategically select which dimensions in the input will be searched first. These dimensions are chosen by approximating how much each dimension contributes to the classification output. This helps to manage the issue of high dimensionality. This proposed method is compared with a state-of-the-art technique and shows improvements in efficiency and quality. The second contribution of this work is an abstraction technique that models regions in the input space by a set of potential adversarial inputs. This set of potential adversarial inputs can be generated and verified much quicker than the entire region. If an adversarial input is found in this set then more expensive verification techniques can be skipped because the result is already known. This thesis introduces the randomized fast gradient sign method (RFGSM) that better models regions than its predecessor through increased output variance and maintains its high success rate of adversarial input generation. The final contribution of this work is a framework that adds these previously mentioned optimizations to existing verification techniques. The framework also splits the region being tested up into smaller regions that can be verified simultaneously. The framework focuses on finding as many adversarial inputs as possible so that the network can be retrained to be more robust to them
    • …
    corecore