15,871 research outputs found

    Distinguishing sequences for partially specified FSMs

    Get PDF
    Distinguishing Sequences (DSs) are used inmany Finite State Machine (FSM) based test techniques. Although Partially Specified FSMs (PSFSMs) generalise FSMs, the computational complexity of constructing Adaptive and Preset DSs (ADSs/PDSs) for PSFSMs has not been addressed. This paper shows that it is possible to check the existence of an ADS in polynomial time but the corresponding problem for PDSs is PSPACE-complete. We also report on the results of experiments with benchmarks and over 8 * 106 PSFSMs. © 2014 Springer International Publishing

    Generating a checking sequence with a minimum number of reset transitions

    Get PDF
    Given a finite state machine M, a checking sequence is an input sequence that is guaranteed to lead to a failure if the implementation under test is faulty and has no more states than M. There has been much interest in the automated generation of a short checking sequence from a finite state machine. However, such sequences can contain reset transitions whose use can adversely affect both the cost of applying the checking sequence and the effectiveness of the checking sequence. Thus, we sometimes want a checking sequence with a minimum number of reset transitions rather than a shortest checking sequence. This paper describes a new algorithm for generating a checking sequence, based on a distinguishing sequence, that minimises the number of reset transitions used.This work was supported in part by Leverhulme Trust grant number F/00275/D, Testing State Based Systems, Natural Sciences and Engineering Research Council (NSERC) of Canada grant number RGPIN 976, and Engineering and Physical Sciences Research Council grant number GR/R43150, Formal Methods and Testing (FORTEST)

    Testing from a nondeterministic finite state machine using adaptive state counting

    Get PDF
    The problem of generating a checking experiment from a nondeterministic finite state machine has been represented in terms of state counting. However, test techniques that use state counting traditionally produce preset test suites. This paper extends the notion of state counting in order to allow the input/output sequences observed in testing to be utilized: Adaptive state counting is introduced. The main benefit of the proposed approach is that it may result in a reduction in the size of the test suite used. An additional benefit is that, where a failure is observed, it is possible to terminate test generation at this point

    Checking experiments for stream X-machines

    Get PDF
    This article is a post-print version of the published article which may be accessed at the link below. Copyright © 2010 Elsevier B.V. All rights reserved.Stream X-machines are a state based formalism that has associated with it a particular development process in which a system is built from trusted components. Testing thus essentially checks that these components have been combined in a correct manner and that the orders in which they can occur are consistent with the specification. Importantly, there are test generation methods that return a checking experiment: a test that is guaranteed to determine correctness as long as the implementation under test (IUT) is functionally equivalent to an unknown element of a given fault domain Ψ. Previous work has show how three methods for generating checking experiments from a finite state machine (FSM) can be adapted to testing from a stream X-machine. However, there are many other methods for generating checking experiments from an FSM and these have a variety of benefits that correspond to different testing scenarios. This paper shows how any method for generating a checking experiment from an FSM can be adapted to generate a checking experiment for testing an implementation against a stream X-machine. This is the case whether we are testing to check that the IUT is functionally equivalent to a specification or we are testing to check that every trace (input/output sequence) of the IUT is also a trace of a nondeterministic specification. Interestingly, this holds even if the fault domain Ψ used is not that traditionally associated with testing from a stream X-machine. The results also apply for both deterministic and nondeterministic implementations

    Checking sequence construction using adaptive and preset distinguishing sequences

    Get PDF
    Methods for testing from finite state machine-based specifications often require the existence of a preset distinguishing sequence for constructing checking sequences. It has been shown that an adaptive distinguishing sequence is sufficient for these methods. This result is significant because adaptive distinguishing sequences are strictly more common and up to exponentially shorter than preset ones. However, there has been no study on the actual effect of using adaptive distinguishing sequences on the length of checking sequences. This paper describes experiments that show that checking sequences constructed using adaptive distinguishing sequences are almost consistently shorter than those based on preset distinguishing sequences. This is investigated for three different checking sequence generation methods and the results obtained from an extensive experimental study are given

    Estimating the feasibility of transition paths in extended finite state machines

    Get PDF
    There has been significant interest in automating testing on the basis of an extended finite state machine (EFSM) model of the required behaviour of the implementation under test (IUT). Many test criteria require that certain parts of the EFSM are executed. For example, we may want to execute every transition of the EFSM. In order to find a test suite (set of input sequences) that achieves this we might first derive a set of paths through the EFSM that satisfy the criterion using, for example, algorithms from graph theory. We then attempt to produce input sequences that trigger these paths. Unfortunately, however, the EFSM might have infeasible paths and the problem of determining whether a path is feasible is generally undecidable. This paper describes an approach in which a fitness function is used to estimate how easy it is to find an input sequence to trigger a given path through an EFSM. Such a fitness function could be used in a search-based approach in which we search for a path with good fitness that achieves a test objective, such as executing a particular transition, and then search for an input sequence that triggers the path. If this second search fails then we search for another path with good fitness and repeat the process. We give a computationally inexpensive approach (fitness function) that estimates the feasibility of a path. In order to evaluate this fitness function we compared the fitness of a path with the ease with which an input sequence can be produced using search to trigger the path and we used random sampling in order to estimate this. The empirical evidence suggests that a reasonably good correlation (0.72 and 0.62) exists between the fitness of a path, produced using the proposed fitness function, and an estimate of the ease with which we can randomly generate an input sequence to trigger the path

    Extended macro grammars and stack controlled machines

    Get PDF
    K-extended basic macro grammars are introduced, where K is any class of languages. The class B(K) of languages generated by such grammars is investigated, together with the class LB(K) of languages generated by the corresponding linear basic grammars. For any full semi-AFL K, B(K) is a full AFL closed under iterated LB(K)-substitution, but not necessarily under substitution. For any machine type D, the stack controlled machine type corresponding to D is introduced, denoted S(D), and the checking-stack controlled machine type CS(D). The data structure of this machine is a stack which controls a pushdown of data structures from D. If D accepts K, then S(D) accepts B(K) and CS(D) accepts LB(K). Thus the classes B(K) are characterized by stack controlled machines and the classes LB(K), i.e., the full hyper-AFLs, by checking-stack controlled machines. A full basic-AFL is a full AFL K such that B(K)C K. Every full basic-AFL is a full hyper-AFL, but not vice versa. The class of OI macro languages (i.e., indexed languages, i.e., nested stack automaton languages) is a full basic-AFL, properly containing the smallest full basic-AFL. The latter is generated by the ultrabasic macro grammars and accepted by the nested stack automata with bounded depth of nesting (and properly contains the stack languages, the ETOL languages, i.e., the smallest full hyper-AFL, and the basic macro languages). The full basic-AFLs are characterized by bounded nested stack controlled machines
    corecore