2,099 research outputs found

    All Maximal Independent Sets and Dynamic Dominance for Sparse Graphs

    Full text link
    We describe algorithms, based on Avis and Fukuda's reverse search paradigm, for listing all maximal independent sets in a sparse graph in polynomial time and delay per output. For bounded degree graphs, our algorithms take constant time per set generated; for minor-closed graph families, the time is O(n) per set, and for more general sparse graph families we achieve subquadratic time per set. We also describe new data structures for maintaining a dynamic vertex set S in a sparse or minor-closed graph family, and querying the number of vertices not dominated by S; for minor-closed graph families the time per update is constant, while it is sublinear for any sparse graph family. We can also maintain a dynamic vertex set in an arbitrary m-edge graph and test the independence of the maintained set in time O(sqrt m) per update. We use the domination data structures as part of our enumeration algorithms.Comment: 10 page

    Operads with compatible CL-shellable partition posets admit a Poincar\'e-Birkhoff-Witt basis

    Full text link
    In 2007, Vallette built a bridge across posets and operads by proving that an operad is Koszul if and only if the associated partition posets are Cohen-Macaulay. Both notions of being Koszul and being Cohen-Macaulay admit different refinements: our goal here is to link two of these refinements. We more precisely prove that any (basic-set) operad whose associated posets admit isomorphism-compatible CL-shellings admits a Poincar\'e-Birkhoff-Witt basis. Furthermore, we give counter-examples to the converse

    Regular Languages meet Prefix Sorting

    Full text link
    Indexing strings via prefix (or suffix) sorting is, arguably, one of the most successful algorithmic techniques developed in the last decades. Can indexing be extended to languages? The main contribution of this paper is to initiate the study of the sub-class of regular languages accepted by an automaton whose states can be prefix-sorted. Starting from the recent notion of Wheeler graph [Gagie et al., TCS 2017]-which extends naturally the concept of prefix sorting to labeled graphs-we investigate the properties of Wheeler languages, that is, regular languages admitting an accepting Wheeler finite automaton. Interestingly, we characterize this family as the natural extension of regular languages endowed with the co-lexicographic ordering: when sorted, the strings belonging to a Wheeler language are partitioned into a finite number of co-lexicographic intervals, each formed by elements from a single Myhill-Nerode equivalence class. Moreover: (i) We show that every Wheeler NFA (WNFA) with nn states admits an equivalent Wheeler DFA (WDFA) with at most 2n1Σ2n-1-|\Sigma| states that can be computed in O(n3)O(n^3) time. This is in sharp contrast with general NFAs. (ii) We describe a quadratic algorithm to prefix-sort a proper superset of the WDFAs, a O(nlogn)O(n\log n)-time online algorithm to sort acyclic WDFAs, and an optimal linear-time offline algorithm to sort general WDFAs. By contribution (i), our algorithms can also be used to index any WNFA at the moderate price of doubling the automaton's size. (iii) We provide a minimization theorem that characterizes the smallest WDFA recognizing the same language of any input WDFA. The corresponding constructive algorithm runs in optimal linear time in the acyclic case, and in O(nlogn)O(n\log n) time in the general case. (iv) We show how to compute the smallest WDFA equivalent to any acyclic DFA in nearly-optimal time.Comment: added minimization theorems; uploaded submitted version; New version with new results (W-MH theorem, linear determinization), added author: Giovanna D'Agostin
    corecore