87 research outputs found

    Generators and Bases for Monadic Closures

    Get PDF
    It is well-known that every regular language admits a unique minimal deterministic acceptor. Establishing an analogous result for non-deterministic acceptors is significantly more difficult, but nonetheless of great practical importance. To tackle this issue, a number of sub-classes of non-deterministic automata have been identified, all admitting canonical minimal representatives. In previous work, we have shown that such representatives can be recovered categorically in two steps. First, one constructs the minimal bialgebra accepting a given regular language, by closing the minimal coalgebra with additional algebraic structure over a monad. Second, one identifies canonical generators for the algebraic part of the bialgebra, to derive an equivalent coalgebra with side effects in a monad. In this paper, we further develop the general theory underlying these two steps. On the one hand, we show that deriving a minimal bialgebra from a minimal coalgebra can be realized by applying a monad on an appropriate category of subobjects. On the other hand, we explore the abstract theory of generators and bases for algebras over a monad

    Canonical Algebraic Generators in Automata Learning

    Get PDF
    Many methods for the verification of complex computer systems require the existence of a tractable mathematical abstraction of the system, often in the form of an automaton. In reality, however, such a model is hard to come up with, in particular manually. Automata learning is a technique that can automatically infer an automaton model from a system -- by observing its behaviour. The majority of automata learning algorithms is based on the so-called L* algorithm. The acceptor learned by L* has an important property: it is canonical, in the sense that, it is, up to isomorphism, the unique deterministic finite automaton of minimal size accepting a given regular language. Establishing a similar result for other classes of acceptors, often with side-effects, is of great practical importance. Non-deterministic finite automata, for instance, can be exponentially more succinct than deterministic ones, allowing verification to scale. Unfortunately, identifying a canonical size-minimal non-deterministic acceptor of a given regular language is in general not possible: it can happen that a regular language is accepted by two non-isomorphic non-deterministic finite automata of minimal size. In particular, it thus is unclear which one of the automata should be targeted by a learning algorithm. In this thesis, we further explore the issue and identify (sub-)classes of acceptors that admit canonical size-minimal representatives. In more detail, the contributions of this thesis are three-fold. First, we expand the automata (learning) theory of Guarded Kleene Algebra with Tests (GKAT), an efficiently decidable logic expressive enough to model simple imperative programs. In particular, we present GL*, an algorithm that learns the unique size-minimal GKAT automaton for a given deterministic language, and prove that GL* is more efficient than an existing variation of L*. We implement both algorithms in OCaml, and compare them on example programs. Second, we present a category-theoretical framework based on generators, bialgebras, and distributive laws, which identifies, for a wide class of automata with side-effects in a monad, canonical target models for automata learning. Apart from recovering examples from the literature, we discover a new canonical acceptor of regular languages, and present a unifying minimality result. Finally, we show that the construction underlying our framework is an instance of a more general theory. First, we see that deriving a minimal bialgebra from a minimal coalgebra can be realized by applying a monad on a category of subobjects with respect to an epi-mono factorisation system. Second, we explore the abstract theory of generators and bases for algebras over a monad: we discuss bases for bialgebras, the product of bases, generalise the representation theory of linear maps, and compare our ideas to a coalgebra-based approach

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    A Completeness Theorem for Probabilistic Regular Expressions

    Full text link
    We introduce Probabilistic Regular Expressions (PRE), a probabilistic analogue of regular expressions denoting probabilistic languages in which every word is assigned a probability of being generated. We present and prove the completeness of an inference system for reasoning about probabilistic language equivalence of PRE based on Salomaa's axiomatisation of Kleene Algebra

    Canonical Algebraic Generators in Automata Learning

    Full text link
    Many methods for the verification of complex computer systems require the existence of a tractable mathematical abstraction of the system, often in the form of an automaton. In reality, however, such a model is hard to come up with, in particular manually. Automata learning is a technique that can automatically infer an automaton model from a system -- by observing its behaviour. The majority of automata learning algorithms is based on the so-called L* algorithm. The acceptor learned by L* has an important property: it is canonical, in the sense that, it is, up to isomorphism, the unique deterministic finite automaton of minimal size accepting a given regular language. Establishing a similar result for other classes of acceptors, often with side-effects, is of great practical importance. Non-deterministic finite automata, for instance, can be exponentially more succinct than deterministic ones, allowing verification to scale. Unfortunately, identifying a canonical size-minimal non-deterministic acceptor of a given regular language is in general not possible: it can happen that a regular language is accepted by two non-isomorphic non-deterministic finite automata of minimal size. In particular, it thus is unclear which one of the automata should be targeted by a learning algorithm. In this thesis, we further explore the issue and identify (sub-)classes of acceptors that admit canonical size-minimal representatives.Comment: PhD thesi

    Generators and Bases for Monadic Closures

    Get PDF
    It is well-known that every regular language admits a unique minimal deterministic acceptor. Establishing an analogous result for non-deterministic acceptors is significantly more difficult, but nonetheless of great practical importance. To tackle this issue, a number of sub-classes of nondeterministic automata have been identified, all admitting canonical minimal representatives. In previous work, we have shown that such representatives can be recovered categorically in two steps. First, one constructs the minimal bialgebra accepting a given regular language, by closing the minimal coalgebra with additional algebraic structure over a monad. Second, one identifies canonical generators for the algebraic part of the bialgebra, to derive an equivalent coalgebra with side effects in a monad. In this paper, we further develop the general theory underlying these two steps. On the one hand, we show that deriving a minimal bialgebra from a minimal coalgebra can be realized by applying a monad on an appropriate category of subobjects. On the other hand, we explore the abstract theory of generators and bases for algebras over a monad

    From enhanced coinduction towards enhanced induction

    Get PDF
    International audienceThere exist a rich and well-developed theory of enhancements of the coinduction proof method, widely used on behavioural relations such as bisimilarity. We study how to develop an analogous theory for inductive behaviour relations, i.e., relations defined from inductive observables. Similarly to the coinductive setting, our theory makes use of (semi)-progressions of the form R->F(R), where R is a relation on processes and F is a function on relations, meaning that there is an appropriate match on the transitions that the processes in R can perform in which the process derivatives are in F(R). For a given preorder, an enhancement corresponds to a sound function, i.e., one for which R->F(R) implies that R is contained in the preorder; and similarly for equivalences. We introduce weights on the observables of an inductive relation, and a weight-preserving condition on functions that guarantees soundness. We show that the class of functions contains non-trivial functions and enjoys closure properties with respect to desirable function constructors, so to be able to derive sophisticated sound functions (and hence sophisticated proof techniques) from simpler ones. We consider both strong semantics (in which all actions are treated equally) and weak semantics (in which one abstracts from internal transitions). We test our enhancements on a few non-trivial examples

    Dualities in modal logic

    Get PDF
    Categorical dualities are an important tool in the study of (modal) logics. They offer conceptual understanding and enable the transfer of results between the different semantics of a logic. As such, they play a central role in the proofs of completeness theorems, Sahlqvist theorems and Goldblatt-Thomason theorems. A common way to obtain dualities is by extending existing ones. For example, Jonsson-Tarski duality is an extension of Stone duality. A convenient formalism to carry out such extensions is given by the dual categorical notions of algebras and coalgebras. Intuitively, these allow one to isolate the new part of a duality from the existing part. In this thesis we will derive both existing and new dualities via this route, and we show how to use the dualities to investigate logics. However, not all (modal logical) paradigms fit the (co)algebraic perspective. In particular, modal intuitionistic logics do not enjoy a coalgebraic treatment, and there is a general lack of duality results for them. To remedy this, we use a generalisation of both algebras and coalgebras called dialgebras. Guided by the research field of coalgebraic logic, we introduce the framework of dialgebraic logic. We show how a large class of modal intuitionistic logics can be modelled as dialgebraic logics and we prove dualities for them. We use the dialgebraic framework to prove general completeness, Hennessy-Milner, representation and Goldblatt-Thomason theorems, and instantiate this to a wide variety of modal intuitionistic logics. Additionally, we use the dialgebraic perspective to investigate modal extensions of the meet-implication fragment of intuitionistic logic. We instantiate general dialgebraic results, and describe how modal meet-implication logics relate to modal intuitionistic logics
    • …
    corecore