629 research outputs found

    Condorcet Domains, Median Graphs and the Single Crossing Property

    Get PDF
    Condorcet domains are sets of linear orders with the property that, whenever the preferences of all voters belong to this set, the majority relation has no cycles. We observe that, without loss of generality, such domain can be assumed to be closed in the sense that it contains the majority relation of every profile with an odd number of individuals whose preferences belong to this domain. We show that every closed Condorcet domain is naturally endowed with the structure of a median graph and that, conversely, every median graph is associated with a closed Condorcet domain (which may not be a unique one). The subclass of those Condorcet domains that correspond to linear graphs (chains) are exactly the preference domains with the classical single crossing property. As a corollary, we obtain that the domains with the so-called `representative voter property' (with the exception of a 4-cycle) are the single crossing domains. Maximality of a Condorcet domain imposes additional restrictions on the underlying median graph. We prove that among all trees only the chains can induce maximal Condorcet domains, and we characterize the single crossing domains that in fact do correspond to maximal Condorcet domains. Finally, using Nehring's and Puppe's (2007) characterization of monotone Arrowian aggregation, our analysis yields a rich class of strategy-proof social choice functions on any closed Condorcet domain

    Sequential Deliberation for Social Choice

    Full text link
    In large scale collective decision making, social choice is a normative study of how one ought to design a protocol for reaching consensus. However, in instances where the underlying decision space is too large or complex for ordinal voting, standard voting methods of social choice may be impractical. How then can we design a mechanism - preferably decentralized, simple, scalable, and not requiring any special knowledge of the decision space - to reach consensus? We propose sequential deliberation as a natural solution to this problem. In this iterative method, successive pairs of agents bargain over the decision space using the previous decision as a disagreement alternative. We describe the general method and analyze the quality of its outcome when the space of preferences define a median graph. We show that sequential deliberation finds a 1.208- approximation to the optimal social cost on such graphs, coming very close to this value with only a small constant number of agents sampled from the population. We also show lower bounds on simpler classes of mechanisms to justify our design choices. We further show that sequential deliberation is ex-post Pareto efficient and has truthful reporting as an equilibrium of the induced extensive form game. We finally show that for general metric spaces, the second moment of of the distribution of social cost of the outcomes produced by sequential deliberation is also bounded

    Finding a Collective Set of Items: From Proportional Multirepresentation to Group Recommendation

    Full text link
    We consider the following problem: There is a set of items (e.g., movies) and a group of agents (e.g., passengers on a plane); each agent has some intrinsic utility for each of the items. Our goal is to pick a set of KK items that maximize the total derived utility of all the agents (i.e., in our example we are to pick KK movies that we put on the plane's entertainment system). However, the actual utility that an agent derives from a given item is only a fraction of its intrinsic one, and this fraction depends on how the agent ranks the item among the chosen, available, ones. We provide a formal specification of the model and provide concrete examples and settings where it is applicable. We show that the problem is hard in general, but we show a number of tractability results for its natural special cases

    Preferences Single-Peaked on a Tree: Multiwinner Elections and Structural Results

    Full text link
    A preference profile is single-peaked on a tree if the candidate set can be equipped with a tree structure so that the preferences of each voter are decreasing from their top candidate along all paths in the tree. This notion was introduced by Demange (1982), and subsequently Trick (1989) described an efficient algorithm for deciding if a given profile is single-peaked on a tree. We study the complexity of multiwinner elections under several variants of the Chamberlin-Courant rule for preferences single-peaked on trees. We show that the egalitarian version of this problem admits a polynomial-time algorithm. For the utilitarian version, we prove that winner determination remains NP-hard, even for the Borda scoring function; however, a winning committee can be found in polynomial time if either the number of leaves or the number of internal vertices of the underlying tree is bounded by a constant. To benefit from these positive results, we need a procedure that can determine whether a given profile is single-peaked on a tree that has additional desirable properties (such as, e.g., a small number of leaves). To address this challenge, we develop a structural approach that enables us to compactly represent all trees with respect to which a given profile is single-peaked. We show how to use this representation to efficiently find the best tree for a given profile for use with our winner determination algorithms: Given a profile, we can efficiently find a tree with the minimum number of leaves, or a tree with the minimum number of internal vertices among trees on which the profile is single-peaked. We also consider several other optimization criteria for trees: for some we obtain polynomial-time algorithms, while for others we show NP-hardness results.Comment: 44 pages, extends works published at AAAI 2016 and IJCAI 201

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Mass differentiated reading skills instruction in high school

    Full text link
    Thesis (M.Ed.)--Boston University N.B.: Page 3 Misnumbered

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum
    • …
    corecore