2,256 research outputs found

    A Majorization-Minimization Approach to Design of Power Transmission Networks

    Full text link
    We propose an optimization approach to design cost-effective electrical power transmission networks. That is, we aim to select both the network structure and the line conductances (line sizes) so as to optimize the trade-off between network efficiency (low power dissipation within the transmission network) and the cost to build the network. We begin with a convex optimization method based on the paper ``Minimizing Effective Resistance of a Graph'' [Ghosh, Boyd \& Saberi]. We show that this (DC) resistive network method can be adapted to the context of AC power flow. However, that does not address the combinatorial aspect of selecting network structure. We approach this problem as selecting a subgraph within an over-complete network, posed as minimizing the (convex) network power dissipation plus a non-convex cost on line conductances that encourages sparse networks where many line conductances are set to zero. We develop a heuristic approach to solve this non-convex optimization problem using: (1) a continuation method to interpolate from the smooth, convex problem to the (non-smooth, non-convex) combinatorial problem, (2) the majorization-minimization algorithm to perform the necessary intermediate smooth but non-convex optimization steps. Ultimately, this involves solving a sequence of convex optimization problems in which we iteratively reweight a linear cost on line conductances to fit the actual non-convex cost. Several examples are presented which suggest that the overall method is a good heuristic for network design. We also consider how to obtain sparse networks that are still robust against failures of lines and/or generators.Comment: 8 pages, 3 figures. To appear in Proc. 49th IEEE Conference on Decision and Control (CDC '10

    A guaranteed-convergence framework for passivity enforcement of linear macromodels

    Get PDF
    Passivity enforcement is a key step in the extraction of linear macromodels of electrical interconnects and packages for Signal and Power Integrity applications. Most state-of-the-art techniques for passivity enforcement are based on suboptimal or approximate formulations that do not guarantee convergence. We introduce in this paper a new rigorous framework that casts passivity enforcement as a convex non-smooth optimization problem. Thanks to convexity, we are able to prove convergence to the optimal solution within a finite number of steps. The effectiveness of this approach is demonstrated through various numerical example

    CoCoA: A General Framework for Communication-Efficient Distributed Optimization

    Get PDF
    The scale of modern datasets necessitates the development of efficient distributed optimization methods for machine learning. We present a general-purpose framework for distributed computing environments, CoCoA, that has an efficient communication scheme and is applicable to a wide variety of problems in machine learning and signal processing. We extend the framework to cover general non-strongly-convex regularizers, including L1-regularized problems like lasso, sparse logistic regression, and elastic net regularization, and show how earlier work can be derived as a special case. We provide convergence guarantees for the class of convex regularized loss minimization objectives, leveraging a novel approach in handling non-strongly-convex regularizers and non-smooth loss functions. The resulting framework has markedly improved performance over state-of-the-art methods, as we illustrate with an extensive set of experiments on real distributed datasets

    Better Mini-Batch Algorithms via Accelerated Gradient Methods

    Full text link
    Mini-batch algorithms have been proposed as a way to speed-up stochastic convex optimization problems. We study how such algorithms can be improved using accelerated gradient methods. We provide a novel analysis, which shows how standard gradient methods may sometimes be insufficient to obtain a significant speed-up and propose a novel accelerated gradient algorithm, which deals with this deficiency, enjoys a uniformly superior guarantee and works well in practice
    • 

    corecore