576 research outputs found

    Bayesian Conditional Tensor Factorizations for High-Dimensional Classification

    Full text link
    In many application areas, data are collected on a categorical response and high-dimensional categorical predictors, with the goals being to build a parsimonious model for classification while doing inferences on the important predictors. In settings such as genomics, there can be complex interactions among the predictors. By using a carefully-structured Tucker factorization, we define a model that can characterize any conditional probability, while facilitating variable selection and modeling of higher-order interactions. Following a Bayesian approach, we propose a Markov chain Monte Carlo algorithm for posterior computation accommodating uncertainty in the predictors to be included. Under near sparsity assumptions, the posterior distribution for the conditional probability is shown to achieve close to the parametric rate of contraction even in ultra high-dimensional settings. The methods are illustrated using simulation examples and biomedical applications

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Bayesian dynamic financial networks with time-varying predictors

    Full text link
    We propose a Bayesian nonparametric model including time-varying predictors in dynamic network inference. The model is applied to infer the dependence structure among financial markets during the global financial crisis, estimating effects of verbal and material cooperation efforts. We interestingly learn contagion effects, with increasing influence of verbal relations during the financial crisis and opposite results during the United States housing bubble

    Bayesian Model Selection in Complex Linear Systems, as Illustrated in Genetic Association Studies

    Full text link
    Motivated by examples from genetic association studies, this paper considers the model selection problem in a general complex linear model system and in a Bayesian framework. We discuss formulating model selection problems and incorporating context-dependent {\it a priori} information through different levels of prior specifications. We also derive analytic Bayes factors and their approximations to facilitate model selection and discuss their theoretical and computational properties. We demonstrate our Bayesian approach based on an implemented Markov Chain Monte Carlo (MCMC) algorithm in simulations and a real data application of mapping tissue-specific eQTLs. Our novel results on Bayes factors provide a general framework to perform efficient model comparisons in complex linear model systems

    MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package

    Get PDF
    Generalized linear mixed models provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in closed form. Markov chain Monte Carlo methods solve this problem by sampling from a series of simpler conditional distributions that can be evaluated. The R package MCMCglmm implements such an algorithm for a range of model fitting problems. More than one response variable can be analyzed simultaneously, and these variables are allowed to follow Gaussian, Poisson, multi(bi)nominal, exponential, zero-inflated and censored distributions. A range of variance structures are permitted for the random effects, including interactions with categorical or continuous variables (i.e., random regression), and more complicated variance structures that arise through shared ancestry, either through a pedigree or through a phylogeny. Missing values are permitted in the response variable(s) and data can be known up to some level of measurement error as in meta-analysis. All simu- lation is done in C/ C++ using the CSparse library for sparse linear systems.
    corecore