789 research outputs found

    Device-independent dimension test in a multiparty Bell experiment

    Full text link
    A device-independent dimension test for a Bell experiment aims to estimate the underlying Hilbert space dimension that is required to produce given measurement statistical data without any other assumptions concerning the quantum apparatus. Previous work mostly deals with the two-party version of this problem. In this paper, we propose a very general and robust approach to test the dimension of any subsystem in a multiparty Bell experiment. Our dimension test stems from the study of a new multiparty scenario which we call prepare-and-distribute. This is like the prepare-and-measure scenario, but the quantum state is sent to multiple, non-communicating parties. Through specific examples, we show that our test results can be tight. Furthermore, we compare the performance of our test to results based on known bipartite tests, and witness remarkable advantage, which indicates that our test is of a true multiparty nature. We conclude by pointing out that with some partial information about the quantum states involved in the experiment, it is possible to learn other interesting properties beyond dimension.Comment: 10 pages, 2 figure

    Squares of matrix-product codes

    Get PDF
    The component-wise or Schur product CCC*C' of two linear error-correcting codes CC and CC' over certain finite field is the linear code spanned by all component-wise products of a codeword in CC with a codeword in CC'. When C=CC=C', we call the product the square of CC and denote it C2C^{*2}. Motivated by several applications of squares of linear codes in the area of cryptography, in this paper we study squares of so-called matrix-product codes, a general construction that allows to obtain new longer codes from several ``constituent'' codes. We show that in many cases we can relate the square of a matrix-product code to the squares and products of their constituent codes, which allow us to give bounds or even determine its minimum distance. We consider the well-known (u,u+v)(u,u+v)-construction, or Plotkin sum (which is a special case of a matrix-product code) and determine which parameters we can obtain when the constituent codes are certain cyclic codes. In addition, we use the same techniques to study the squares of other matrix-product codes, for example when the defining matrix is Vandermonde (where the minimum distance is in a certain sense maximal with respect to matrix-product codes).This work is supported by the Danish Council for IndependentResearch: grant DFF-4002-00367, theSpanish Ministry of Economy/FEDER: grant RYC-2016-20208 (AEI/FSE/UE), the Spanish Ministry of Science/FEDER: grant PGC2018-096446-B-C21, and Junta de CyL (Spain): grant VA166G

    Nondeterministic quantum communication complexity: the cyclic equality game and iterated matrix multiplication

    Get PDF
    We study nondeterministic multiparty quantum communication with a quantum generalization of broadcasts. We show that, with number-in-hand classical inputs, the communication complexity of a Boolean function in this communication model equals the logarithm of the support rank of the corresponding tensor, whereas the approximation complexity in this model equals the logarithm of the border support rank. This characterisation allows us to prove a log-rank conjecture posed by Villagra et al. for nondeterministic multiparty quantum communication with message-passing. The support rank characterization of the communication model connects quantum communication complexity intimately to the theory of asymptotic entanglement transformation and algebraic complexity theory. In this context, we introduce the graphwise equality problem. For a cycle graph, the complexity of this communication problem is closely related to the complexity of the computational problem of multiplying matrices, or more precisely, it equals the logarithm of the asymptotic support rank of the iterated matrix multiplication tensor. We employ Strassen's laser method to show that asymptotically there exist nontrivial protocols for every odd-player cyclic equality problem. We exhibit an efficient protocol for the 5-player problem for small inputs, and we show how Young flattenings yield nontrivial complexity lower bounds
    corecore