1,337 research outputs found

    Generalization of form in visual pattern classification.

    Get PDF
    Human observers were trained to criterion in classifying compound Gabor signals with sym- metry relationships, and were then tested with each of 18 blob-only versions of the learning set. General- ization to dark-only and light-only blob versions of the learning signals, as well as to dark-and-light blob versions was found to be excellent, thus implying virtually perfect generalization of the ability to classify mirror-image signals. The hypothesis that the learning signals are internally represented in terms of a 'blob code' with explicit labelling of contrast polarities was tested by predicting observed generalization behaviour in terms of various types of signal representations (pixelwise, Laplacian pyramid, curvature pyramid, ON/OFF, local maxima of Laplacian and curvature operators) and a minimum-distance rule. Most representations could explain generalization for dark-only and light-only blob patterns but not for the high-thresholded versions thereof. This led to the proposal of a structure-oriented blob-code. Whether such a code could be used in conjunction with simple classifiers or should be transformed into a propo- sitional scheme of representation operated upon by a rule-based classification process remains an open question

    Hyperbolic Deep Neural Networks: A Survey

    Full text link
    Recently, there has been a rising surge of momentum for deep representation learning in hyperbolic spaces due to theirhigh capacity of modeling data like knowledge graphs or synonym hierarchies, possessing hierarchical structure. We refer to the model as hyperbolic deep neural network in this paper. Such a hyperbolic neural architecture potentially leads to drastically compact model withmuch more physical interpretability than its counterpart in Euclidean space. To stimulate future research, this paper presents acoherent and comprehensive review of the literature around the neural components in the construction of hyperbolic deep neuralnetworks, as well as the generalization of the leading deep approaches to the Hyperbolic space. It also presents current applicationsaround various machine learning tasks on several publicly available datasets, together with insightful observations and identifying openquestions and promising future directions
    corecore