1,108 research outputs found

    Observability analysis of sensorless synchronous machine drives

    Get PDF
    This paper studies the local observability of synchronous machines using a unified approach. Recently, motion sensorless control of electrical drives has gained high interest. The main challenge for such a technology is the poor performance in some operation conditions. One interesting theory that helps understanding the origin of this problem is the observability analysis of nonlinear systems. In this paper, the observability of the wound-rotor synchronous machine is studied. The results are extended to other synchronous machines, adopting a unified analysis. Furthermore, a high-frequency injection-based technique is proposed to enhance the sensorless operation of the wound-rotor synchronous machine at standstill

    An Improved Sideband Current Harmonic Model of Interior PMSM Drive by Considering Magnetic Saturation and Cross-Coupling Effects

    Get PDF
    The sideband current harmonics, as parasitic characteristics in permanent-magnet synchronous machine (PMSM) drives with space vector pulsewidth modulation technique, will increase the corresponding electromagnetic loss, torque ripple, vibration, and acoustic noises. Therefore, fast yet accurate evaluation of the resultant sideband current harmonic components is of particular importance during the design stage of the drive system. However, the inevitable magnetic saturation and cross-coupling effects in interior PMSM drives would have a significant impact on the current components, while the existing analytical sideband current harmonic model neglects those effects. This paper introduces a significant improvement on the analytical model by taking into account these effects with corresponding nonlinear factors. Experimental results are carried out to underpin the accuracy improvements of the predictions from the proposed model over the existing analytical one. The proposed model can offer a very detailed and insightful revelation of impacts of the magnetic saturation and cross-coupling effects on the corresponding sideband current harmonics

    A Versatile workbench simulator: Five-phase inverter and PMa-SynRM performance evaluation

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Thispaperpresents the design and structure of aversatileworkbench simulator forevaluating the performance of a five-phase inverter andPermanent Magnet assisted Synchronous Reluctance Motor(PMa-SynRM). The simulatorallows for adding variations tothe modulationtechniques, changingthe inverter structure’s semiconductordevice, and calculatingtheinverter’spower losses. Itcanalso facilitate observingthe current, voltage,andthe jointtemperature ofthe semiconductors devices. Furthermore,wecanobtain a perform that is close to anactualPMa-SynRM, dependingon the desired conditionsof speed and torque. The workbench simulator wasdevelopedby combining three software: Matlab/Simulink, PLECSand Altair Flux.Postprint (author's final draft

    Efficiency Optimization and Control of Permanent Magnet Synchronous Brushless Motors in Three-Phase Pulse Width Modulated Voltage Source Inverter Drives

    Get PDF
    In high performance drives where it is desirable to exploit the usefulness of reluctance torque and machine saliency, permanent magnet synchronous brushless motors are machines of choice. However, speed control of these machines especially in the flux weakening region becomes more complex due to the non-linear coupling among the winding currents as well as the nonlinearity present in the torque. While numerous research efforts in the past have considered control and efficiency improvements of induction motors, and synchronous motors with field windings, research efforts in developing an efficiency optimization and control strategy applicable to all salient-type permanent magnet synchronous brushless motors are still in their infancy.;A traditional control technique that has commonly been employed in efficiency improvement efforts is the stator\u27s zero d-axis current (i ds=0) technique. In this method, the rotor flux is aligned with the direct-axis so that the stator\u27s direct-axis current is zero and the torque becomes a linear function of the stator\u27s quadrature-axis current. Although this method achieves decoupling of winding currents and simplicity of control, it does not fully exploit the use of the machine\u27s saliency and reluctance torque, and is also not well-suited for wide-range load operations. The maximum torque per ampere (MTPA) technique is another less complex technique that has been considered which fully exploits the use of machine saliency with motor torque selected along the geometric curve of minimum-amplitude current space vectors for minimum loss operation. The drawback of the MTPA technique is that it does not provide high efficiency performance for synchronous reluctance motors running at low fractional loads.;In this work, the problem of efficiency optimization in the salient-type permanent magnet synchronous brushless motors is investigated. A machine model which includes the effect of core losses is proposed for developing a loss minimization algorithm that dynamically determines the optimal reference currents and voltages required for minimizing the total electrical losses (copper losses and core losses) within the feasible operating regions imposed by the motor and inverter capacities. The loss minimization strategy is implemented within a speed control loop for a synchronous reluctance motor drive and the effectiveness of the proposed scheme is validated by comparing performances with that of the traditional maximum torque per ampere and stator\u27s zero d-axis current vector control methods. It is shown that the proposed scheme offers the advantages of simplicity and superior performance throughout the entire operating range, and also improves motor efficiency to 96% at full load and full-speed operating condition

    Impact of PWM strategies on RMS current of the DC-link Voltage Capacitor of a dual-three phase drive

    Get PDF
    The major drawback of usual dual three-phase AC machines, when supplied by a Voltage Source Inverter (VSI), is the occurrence of extra harmonic currents which circulate in the stator windings causing additional losses and constraints on the power component. This paper compares dedicated Pulse Width Modulation (PWM) strategies used for controlling a dual three phase Permanent Magnet Synchronous machine supplied by a six-leg VSI. Since the application is intended for low-voltage (48V) mild-hybrid automotive traction, an additional major constraint arises: the compactness of the drive related to the size of the DC-bus capacitor. Thus, the PWM strategy must be chosen by taking into consideration its impact on both, the motor and the RMS value of DC-bus current
    corecore