5,871 research outputs found

    Cross-layer Congestion Control, Routing and Scheduling Design in Ad Hoc Wireless Networks

    Get PDF
    This paper considers jointly optimal design of crosslayer congestion control, routing and scheduling for ad hoc wireless networks. We first formulate the rate constraint and scheduling constraint using multicommodity flow variables, and formulate resource allocation in networks with fixed wireless channels (or single-rate wireless devices that can mask channel variations) as a utility maximization problem with these constraints. By dual decomposition, the resource allocation problem naturally decomposes into three subproblems: congestion control, routing and scheduling that interact through congestion price. The global convergence property of this algorithm is proved. We next extend the dual algorithm to handle networks with timevarying channels and adaptive multi-rate devices. The stability of the resulting system is established, and its performance is characterized with respect to an ideal reference system which has the best feasible rate region at link layer. We then generalize the aforementioned results to a general model of queueing network served by a set of interdependent parallel servers with time-varying service capabilities, which models many design problems in communication networks. We show that for a general convex optimization problem where a subset of variables lie in a polytope and the rest in a convex set, the dual-based algorithm remains stable and optimal when the constraint set is modulated by an irreducible finite-state Markov chain. This paper thus presents a step toward a systematic way to carry out cross-layer design in the framework of “layering as optimization decomposition” for time-varying channel models

    User equilibrium traffic network assignment with stochastic travel times and late arrival penalty

    Get PDF
    The classical Wardrop user equilibrium (UE) assignment model assumes traveller choices are based on fixed, known travel times, yet these times are known to be rather variable between trips, both within and between days; typically, then, only mean travel times are represented. Classical stochastic user equilibrium (SUE) methods allow the mean travel times to be differentially perceived across the population, yet in a conventional application neither the UE or SUE approach recognises the travel times to be inherently variable. That is to say, there is no recognition that drivers risk arriving late at their destinations, and that this risk may vary across different paths of the network and according to the arrival time flexibility of the traveller. Recent work on incorporating risky elements into the choice process is seen either to neglect the link to the arrival constraints of the traveller, or to apply only to restricted problems with parallel alternatives and inflexible travel time distributions. In the paper, an alternative approach is described based on the ‘schedule delay’ paradigm, penalising late arrival under fixed departure times. The approach allows flexible travel time densities, which can be fitted to actual surveillance data, to be incorporated. A generalised formulation of UE is proposed, termed a Late Arrival Penalised UE (LAPUE). Conditions for the existence and uniqueness of LAPUE solutions are considered, as well as methods for their computation. Two specific travel time models are then considered, one based on multivariate Normal arc travel times, and an extended model to represent arc incidents, based on mixture distributions of multivariate Normals. Several illustrative examples are used to examine the sensitivity of LAPUE solutions to various input parameters, and in particular its comparison with UE predictions. Finally, paths for further research are discussed, including the extension of the model to include elements such as distributed arrival time constraints and penalties

    Versatile Markovian models for networks with asymmetric TCP sources

    Get PDF
    In this paper we use Stochastic Petri Nets (SPNs) to study the interaction of multiple TCP sources that share one or two buffers, thereby considerably extending earlier work. We first consider two sources sharing a buffer and investigate the consequences of two popular assumptions for the loss process in terms of fairness and link utilization. The results obtained by our model are in agreement with existing analytic models or are closer to results obtained by ns-2 simulations. We then study a network consisting of three sources and two buffers and provide evidence that link sharing is approximately minimum-potential-delay-fair in case of equal round-trip times. \u

    Measurement of uncertainty costs with dynamic traffic simulations

    Get PDF
    Non-recurrent congestion in transportation networks occurs as a consequence of stochastic factors affecting demand and supply. Intelligent Transportation Systems such as Advanced Traveler Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS) are designed in order to reduce the impacts of non-recurrent congestion by providing information to a fraction of users or by controlling the variability of traffic flows. For these reasons, the design of ATIS and ATMS requires reliable forecast of non-recurrent congestion. This paper proposes a new method to measure the impacts of non-recurrent congestion on travel costs by taking risk aversion into account. The traffic model is based on the dynamic traffic simulations model METROPOLIS. Incidents are generated randomly by reducing the capacity of the network. Users can instantaneously adapt to the unexpected travel conditions or can also change their behavior via a day-to-day adjustment process. Comparisons with incident-free simulations provide a benchmark for potential travel time savings that can be brought in by a state-of-the-art information system. We measure the impact of variable travel conditions by describing the willingness to pay to avoid risky or unreliable journeys. Indeed, for risk averse drivers, any uncertainty corresponds to a utility loss. This utility loss is computed for several levels of network disruption. The main results of the paper is that the utility loss due to uncertainty is of the same order of magnitude as the total travel costs.
    corecore