38,212 research outputs found

    Spanning trees on the Sierpinski gasket

    Full text link
    We obtain the numbers of spanning trees on the Sierpinski gasket SGd(n)SG_d(n) with dimension dd equal to two, three and four. The general expression for the number of spanning trees on SGd(n)SG_d(n) with arbitrary dd is conjectured. The numbers of spanning trees on the generalized Sierpinski gasket SGd,b(n)SG_{d,b}(n) with d=2d=2 and b=3,4b=3,4 are also obtained.Comment: 20 pages, 8 figures, 1 tabl

    Generalized characteristic polynomials of graph bundles

    Get PDF
    In this paper, we find computational formulae for generalized characteristic polynomials of graph bundles. We show that the number of spanning trees in a graph is the partial derivative (at (0,1)) of the generalized characteristic polynomial of the graph. Since the reciprocal of the Bartholdi zeta function of a graph can be derived from the generalized characteristic polynomial of a graph, consequently, the Bartholdi zeta function of a graph bundle can be computed by using our computational formulae

    Globally and Locally Minimal Weight Spanning Tree Networks

    Full text link
    The competition between local and global driving forces is significant in a wide variety of naturally occurring branched networks. We have investigated the impact of a global minimization criterion versus a local one on the structure of spanning trees. To do so, we consider two spanning tree structures - the generalized minimal spanning tree (GMST) defined by Dror et al. [1] and an analogous structure based on the invasion percolation network, which we term the generalized invasive spanning tree or GIST. In general, these two structures represent extremes of global and local optimality, respectively. Structural characteristics are compared between the GMST and GIST for a fixed lattice. In addition, we demonstrate a method for creating a series of structures which enable one to span the range between these two extremes. Two structural characterizations, the occupied edge density (i.e., the fraction of edges in the graph that are included in the tree) and the tortuosity of the arcs in the trees, are shown to correlate well with the degree to which an intermediate structure resembles the GMST or GIST. Both characterizations are straightforward to determine from an image and are potentially useful tools in the analysis of the formation of network structures.Comment: 23 pages, 5 figures, 2 tables, typographical error correcte

    On the Tutte-Krushkal-Renardy polynomial for cell complexes

    Full text link
    Recently V. Krushkal and D. Renardy generalized the Tutte polynomial from graphs to cell complexes. We show that evaluating this polynomial at the origin gives the number of cellular spanning trees in the sense of A. Duval, C. Klivans, and J. Martin. Moreover, after a slight modification, the Tutte-Krushkal-Renardy polynomial evaluated at the origin gives a weighted count of cellular spanning trees, and therefore its free term can be calculated by the cellular matrix-tree theorem of Duval et al. In the case of cell decompositions of a sphere, this modified polynomial satisfies the same duality identity as the original polynomial. We find that evaluating the Tutte-Krushkal-Renardy along a certain line gives the Bott polynomial. Finally we prove skein relations for the Tutte-Krushkal-Renardy polynomial..Comment: Minor revision according to a reviewer comments. To appear in the Journal of Combinatorial Theory, Series

    Bounds on the maximum multiplicity of some common geometric graphs

    Get PDF
    We obtain new lower and upper bounds for the maximum multiplicity of some weighted and, respectively, non-weighted common geometric graphs drawn on n points in the plane in general position (with no three points collinear): perfect matchings, spanning trees, spanning cycles (tours), and triangulations. (i) We present a new lower bound construction for the maximum number of triangulations a set of n points in general position can have. In particular, we show that a generalized double chain formed by two almost convex chains admits {\Omega}(8.65^n) different triangulations. This improves the bound {\Omega}(8.48^n) achieved by the double zig-zag chain configuration studied by Aichholzer et al. (ii) We present a new lower bound of {\Omega}(12.00^n) for the number of non-crossing spanning trees of the double chain composed of two convex chains. The previous bound, {\Omega}(10.42^n), stood unchanged for more than 10 years. (iii) Using a recent upper bound of 30^n for the number of triangulations, due to Sharir and Sheffer, we show that n points in the plane in general position admit at most O(68.62^n) non-crossing spanning cycles. (iv) We derive lower bounds for the number of maximum and minimum weighted geometric graphs (matchings, spanning trees, and tours). We show that the number of shortest non-crossing tours can be exponential in n. Likewise, we show that both the number of longest non-crossing tours and the number of longest non-crossing perfect matchings can be exponential in n. Moreover, we show that there are sets of n points in convex position with an exponential number of longest non-crossing spanning trees. For points in convex position we obtain tight bounds for the number of longest and shortest tours. We give a combinatorial characterization of the longest tours, which leads to an O(nlog n) time algorithm for computing them

    Hypergraph polynomials and the Bernardi process

    Get PDF
    Recently O. Bernardi gave a formula for the Tutte polynomial T(x,y)T(x,y) of a graph, based on spanning trees and activities just like the original definition, but using a fixed ribbon structure to order the set of edges in a different way for each tree. The interior polynomial II is a generalization of T(x,1)T(x,1) to hypergraphs. We supply a Bernardi-type description of II using a ribbon structure on the underlying bipartite graph GG. Our formula works because it is determined by the Ehrhart polynomial of the root polytope of GG in the same way as II is. To prove this we interpret the Bernardi process as a way of dissecting the root polytope into simplices, along with a shelling order. We also show that our generalized Bernardi process gives a common extension of bijections (and their inverses) constructed by Baker and Wang between spanning trees and break divisors.Comment: 46 page
    • …
    corecore