2,079 research outputs found

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Performance of antenna selection schemes for massive multiple-input multiple-output systems under Non-orthogonal multiple access cooperative communication

    Get PDF
    46-50Non-orthogonal multiple access (NOMA) has emerged as a promising technology for 5G systems. The most important characteristic of NOMA is that other users' messages is available to the users with better channel conditions. In this work, a modified antenna selection scheme called Double threshold generalized selection combining (DT-GSC) to save power in receivers used for massive multiple-input multiple-output (MIMO) applications are proposed. The diversity combiner selects the paths above two threshold values set at the combiner, the input and the combiner's output. These threshold values are selected based on the practical communication scenario. The average number of combined branches and estimated path are shown mathematically. The bit error performance of DT-GSC and maximal ratio combiner (MRC) are plotted. Through numerical examples it is evident that the new combining technique performs better compared to the existing ones. This combining technique is beneficial in the massive MIMO base station and user equipment with multiple antennas or cooperative communication set up with users employing the MRC scheme. Simulation results are presented to demonstrate the performance of the proposed technique

    Timing and Frequency Synchronization in Practical OFDM Systems

    No full text
    Orthogonal frequency-division multiplexing (OFDM) has been adopted by many broadband wireless communication systems for the simplicity of the receiver technique to support high data rates and user mobility. However, studies also show that the advantage of OFDM over the single-carrier modulation schemes could be substantially compromised by timing or frequency estimation errors at the receiver. In this thesis we investigate the synchronization problem for practical OFDM systems using a system model generalized from the IEEE 802.11 and IEEE 802.16 standards. For preamble based synchronization schemes, which are most common in the downlink of wireless communication systems, we propose a novel timing acquisition algorithm which minimizes false alarm probability and indirectly improves correct detection probability. We then introduce a universal fractional carrier frequency offset (CFO) estimator that outperforms conventional methods at low signal to noise ratio with lower complexity. More accurate timing and frequency estimates can be obtained by our proposed frequency-domain algorithms incorporating channel knowledge. We derive four joint frequency, timing, and channel estimators with different approximations, and then propose a hybrid integer CFO estimation scheme to provide flexible performance and complexity tradeoffs. When the exact channel delay profile is unknown at the receiver, we present a successive timing estimation algorithm to solve the timing ambiguity. Both analytical and simulation results are presented to confirm the performance of the proposed methods in various realistic channel conditions. ..

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    Software-Driven and Virtualized Architectures for Scalable 5G Networks

    Full text link
    In this dissertation, we argue that it is essential to rearchitect 4G cellular core networks–sitting between the Internet and the radio access network–to meet the scalability, performance, and flexibility requirements of 5G networks. Today, there is a growing consensus among operators and research community that software-defined networking (SDN), network function virtualization (NFV), and mobile edge computing (MEC) paradigms will be the key ingredients of the next-generation cellular networks. Motivated by these trends, we design and optimize three core network architectures, SoftMoW, SoftBox, and SkyCore, for different network scales, objectives, and conditions. SoftMoW provides global control over nationwide core networks with the ultimate goal of enabling new routing and mobility optimizations. SoftBox attempts to enhance policy enforcement in statewide core networks to enable low-latency, signaling-efficient, and customized services for mobile devices. Sky- Core is aimed at realizing a compact core network for citywide UAV-based radio networks that are going to serve first responders in the future. Network slicing techniques make it possible to deploy these solutions on the same infrastructure in parallel. To better support mobility and provide verifiable security, these architectures can use an addressing scheme that separates network locations and identities with self-certifying, flat and non-aggregatable address components. To benefit the proposed architectures, we designed a high-speed and memory-efficient router, called Caesar, for this type of addressing schemePHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146130/1/moradi_1.pd

    Game-theoretic Scalable Offloading for Video Streaming Services over LTE and WiFi Networks

    Get PDF
    This paper presents a game-theoretic scalable offloading system that provides seamless video streaming services by effectively offloading parts of video traffic in all video streaming services to a WiFi network to alleviate cellular network congestion. The system also consolidates multiple physical paths in a cost-effective manner. In the proposed system, the fountain encoding symbols of compressed video data are transmitted through long term evolution (LTE) and WiFi networks concurrently to flexibly control the amount of video traffic through the WiFi network as well as mitigate video quality degradation caused by wireless channel errors. Furthermore, the progressive second price auction mechanism is employed to allocate the limited LTE resources to multiple user equipment in order to maximize social welfare while converging to the epsilon-Nash equilibrium. Specifically, we design an application-centric resource valuation that explicitly considers both the realistic wireless network conditions and characteristics of video streaming services. In addition, the scalability and convergence properties of the proposed system are verified both theoretically and experimentally. The proposed system is implemented using network simulator 3. Simulation results are provided to demonstrate the performance improvement of the proposed system.111Nsciescopu
    corecore