11,708 research outputs found

    Detecting rich-club ordering in complex networks

    Full text link
    Uncovering the hidden regularities and organizational principles of networks arising in physical systems ranging from the molecular level to the scale of large communication infrastructures is the key issue for the understanding of their fabric and dynamical properties [1-5]. The ``rich-club'' phenomenon refers to the tendency of nodes with high centrality, the dominant elements of the system, to form tightly interconnected communities and it is one of the crucial properties accounting for the formation of dominant communities in both computer and social sciences [4-8]. Here we provide the analytical expression and the correct null models which allow for a quantitative discussion of the rich-club phenomenon. The presented analysis enables the measurement of the rich-club ordering and its relation with the function and dynamics of networks in examples drawn from the biological, social and technological domains.Comment: 1 table, 3 figure

    Dwelling Quietly in the Rich Club: Brain Network Determinants of Slow Cortical Fluctuations

    Full text link
    For more than a century, cerebral cartography has been driven by investigations of structural and morphological properties of the brain across spatial scales and the temporal/functional phenomena that emerge from these underlying features. The next era of brain mapping will be driven by studies that consider both of these components of brain organization simultaneously -- elucidating their interactions and dependencies. Using this guiding principle, we explored the origin of slowly fluctuating patterns of synchronization within the topological core of brain regions known as the rich club, implicated in the regulation of mood and introspection. We find that a constellation of densely interconnected regions that constitute the rich club (including the anterior insula, amygdala, and precuneus) play a central role in promoting a stable, dynamical core of spontaneous activity in the primate cortex. The slow time scales are well matched to the regulation of internal visceral states, corresponding to the somatic correlates of mood and anxiety. In contrast, the topology of the surrounding "feeder" cortical regions show unstable, rapidly fluctuating dynamics likely crucial for fast perceptual processes. We discuss these findings in relation to psychiatric disorders and the future of connectomics.Comment: 35 pages, 6 figure

    Firms, Courts, and Reputation Mechanisms: Towards a Positive Theory of Private Ordering

    Get PDF
    This Essay formulates a positive model that predicts when commercial parties will employ private ordering to enforce their agreements. The typical enforcement mechanism associated with private ordering is the reputation mechanism, in which a merchant community punishes parties in breach of contract by denying them future business. The growing private ordering literature argues that these private enforcement mechanisms can be superior to the traditional, less efficient enforcement measures provided by public courts. However, previous comparisons between public and private contractual enforcement have presented a misleading dichotomy by failing to consider a third enforcement mechanim: the vertically integrated firm. This Essay develops a model that comprehensively addresses three distinct types of enforcement mechanisms--firms, courts, and reputation-based private ordering. The model rests on a synthesis of transaction cost economics, which compares the efficiencies of firms versus markets, and the private ordering literature, which compares the efficiencies of public courts versus private ordering. It hypothesizes that private ordering will arise when agreements present enforcement difficulties, high-powered market incentives are important, and the costs of entry barriers are low. The Essay then conducts an illustrative test by comparing the model\u27s predictions to documented instances of private ordering

    Temporal ordering of input modulates connectivity formation in a developmental neuronal network model of the cortex

    Get PDF
    Preterm infant brain activity is discontinuous; bursts of activity recorded using EEG (electroencephalography), thought to be driven by subcortical regions, display scale free properties and exhibit a complex temporal ordering known as long-range temporal correlations (LRTCs). During brain development, activity-dependent mechanisms are essential for synaptic connectivity formation, and abolishing burst activity in animal models leads to weak disorganised synaptic connectivity. Moreover, synaptic pruning shares similar mechanisms to spike-timing dependent plasticity (STDP), suggesting that the timing of activity may play a critical role in connectivity formation. We investigated, in a computational model of leaky integrate-and-fire neurones, whether the temporal ordering of burst activity within an external driving input could modulate connectivity formation in the network. Connectivity evolved across the course of simulations using an approach analogous to STDP, from networks with initial random connectivity. Small-world connectivity and hub neurones emerged in the network structure—characteristic properties of mature brain networks. Notably, driving the network with an external input which exhibited LRTCs in the temporal ordering of burst activity facilitated the emergence of these network properties, increasing the speed with which they emerged compared with when the network was driven by the same input with the bursts randomly ordered in time. Moreover, the emergence of small-world properties was dependent on the strength of the LRTCs. These results suggest that the temporal ordering of burst activity could play an important role in synaptic connectivity formation and the emergence of small-world topology in the developing brain

    Detection of the elite structure in a virtual multiplex social system by means of a generalized KK-core

    Get PDF
    Elites are subgroups of individuals within a society that have the ability and means to influence, lead, govern, and shape societies. Members of elites are often well connected individuals, which enables them to impose their influence to many and to quickly gather, process, and spread information. Here we argue that elites are not only composed of highly connected individuals, but also of intermediaries connecting hubs to form a cohesive and structured elite-subgroup at the core of a social network. For this purpose we present a generalization of the KK-core algorithm that allows to identify a social core that is composed of well-connected hubs together with their `connectors'. We show the validity of the idea in the framework of a virtual world defined by a massive multiplayer online game, on which we have complete information of various social networks. Exploiting this multiplex structure, we find that the hubs of the generalized KK-core identify those individuals that are high social performers in terms of a series of indicators that are available in the game. In addition, using a combined strategy which involves the generalized KK-core and the recently introduced MM-core, the elites of the different 'nations' present in the game are perfectly identified as modules of the generalized KK-core. Interesting sudden shifts in the composition of the elite cores are observed at deep levels. We show that elite detection with the traditional KK-core is not possible in a reliable way. The proposed method might be useful in a series of more general applications, such as community detection.Comment: 13 figures, 3 tables, 19 pages. Accepted for publication in PLoS ON

    Revisiting Interval Graphs for Network Science

    Full text link
    The vertices of an interval graph represent intervals over a real line where overlapping intervals denote that their corresponding vertices are adjacent. This implies that the vertices are measurable by a metric and there exists a linear structure in the system. The generalization is an embedding of a graph onto a multi-dimensional Euclidean space and it was used by scientists to study the multi-relational complexity of ecology. However the research went out of fashion in the 1980s and was not revisited when Network Science recently expressed interests with multi-relational networks known as multiplexes. This paper studies interval graphs from the perspective of Network Science

    How Community Institutions Create Economic Advantage: Jewish Diamond Merchants in New York

    Get PDF
    This paper argues that Jewish merchants have historically dominated the diamond industry because of their ability to reliably implement diamond credit sales. Success in the industry requires enforcing executory agreements that are beyond the reach of public courts, and Jewish diamond merchants enforce such contracts with a reputation mechanism supported by a distinctive set of industry, family, and community institutions. An industry arbitration system publicizes promises that are not kept. Intergenerational legacies induce merchants to deal honestly through their very last transaction, so that their children may inherit valuable livelihoods. And ultra-Orthodox Jews, for whom participation in their communities is paramount, provide important value-added services to the industry without posing the threat of theft and flight
    • …
    corecore