30 research outputs found

    On Second-Order Monadic Monoidal and Groupoidal Quantifiers

    Get PDF
    We study logics defined in terms of second-order monadic monoidal and groupoidal quantifiers. These are generalized quantifiers defined by monoid and groupoid word-problems, equivalently, by regular and context-free languages. We give a computational classification of the expressive power of these logics over strings with varying built-in predicates. In particular, we show that ATIME(n) can be logically characterized in terms of second-order monadic monoidal quantifiers

    The descriptive complexity approach to LOGCFL

    Full text link
    Building upon the known generalized-quantifier-based first-order characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC1 and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach's ``hardest context-free language'' is LOGCFL-complete under quantifier-free BIT-free projections. We then prove that FO with unary groupoidal quantifiers is strictly more expressive with the BIT predicate than without. Considering a particular groupoidal quantifier, we prove that first-order logic with majority of pairs is strictly more expressive than first-order with majority of individuals. As a technical tool of independent interest, we define the notion of an aperiodic nondeterministic finite automaton and prove that FO translations are precisely the mappings computed by single-valued aperiodic nondeterministic finite transducers.Comment: 10 pages, 1 figur

    Axiomatizing proof tree concepts in Bounded Arithmetic

    Get PDF
    We construct theories of Cook-Nguyen style two-sort bounded arithmetic whose provably total functions are exactly those in LOGCFL and LOGDCFL. Axiomatizations of both theories are based on the proof tree size characterizations of these classes. We also show that our theory for LOGCFL proves a certain formulation of the pumping lemma for context-free languages

    Existential Second-Order Logic Over Graphs: A Complete Complexity-Theoretic Classification

    Get PDF
    Descriptive complexity theory aims at inferring a problem's computational complexity from the syntactic complexity of its description. A cornerstone of this theory is Fagin's Theorem, by which a graph property is expressible in existential second-order logic (ESO logic) if, and only if, it is in NP. A natural question, from the theory's point of view, is which syntactic fragments of ESO logic also still characterize NP. Research on this question has culminated in a dichotomy result by Gottlob, Kolatis, and Schwentick: for each possible quantifier prefix of an ESO formula, the resulting prefix class either contains an NP-complete problem or is contained in P. However, the exact complexity of the prefix classes inside P remained elusive. In the present paper, we clear up the picture by showing that for each prefix class of ESO logic, its reduction closure under first-order reductions is either FO, L, NL, or NP. For undirected, self-loop-free graphs two containment results are especially challenging to prove: containment in L for the prefix ∃R1⋯∃Rn∀x∃y\exists R_1 \cdots \exists R_n \forall x \exists y and containment in FO for the prefix ∃M∀x∃y\exists M \forall x \exists y for monadic MM. The complex argument by Gottlob, Kolatis, and Schwentick concerning polynomial time needs to be carefully reexamined and either combined with the logspace version of Courcelle's Theorem or directly improved to first-order computations. A different challenge is posed by formulas with the prefix ∃M∀x∀y\exists M \forall x\forall y: We show that they express special constraint satisfaction problems that lie in L.Comment: Technical report version of a STACS 2015 pape

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    Context-Free Graph Properties via Definable Decompositions

    Get PDF

    Regular Representations of Uniform TC^0

    Full text link
    The circuit complexity class DLOGTIME-uniform AC^0 is known to be a modest subclass of DLOGTIME-uniform TC^0. The weakness of AC^0 is caused by the fact that AC^0 is not closed under restricting AC^0-computable queries into simple subsequences of the input. Analogously, in descriptive complexity, the logics corresponding to DLOGTIME-uniform AC^0 do not have the relativization property and hence they are not regular. This weakness of DLOGTIME-uniform AC^0 has been elaborated in the line of research on the Crane Beach Conjecture. The conjecture (which was refuted by Barrington, Immerman, Lautemann, Schweikardt and Th{\'e}rien) was that if a language L has a neutral letter, then L can be defined in first-order logic with the collection of all numerical built-in relations, if and only if L can be already defined in FO with order. In the first part of this article we consider logics in the range of AC^0 and TC^0. First we formulate a combinatorial criterion for a cardinality quantifier C_S implying that all languages in DLOGTIME-uniform TC^0 can be defined in FO(C_S). For instance, this criterion is satisfied by C_S if S is the range of some polynomial with positive integer coefficients of degree at least two. In the second part of the paper we first adapt the key properties of abstract logics to accommodate built-in relations. Then we define the regular interior R-int(L) and regular closure R-cl(L), of a logic L, and show that the Crane Beach Conjecture can be interpreted as a statement concerning the regular interior of first-order logic with built-in relations B. We show that if B={+}, or B contains only unary relations besides the order, then R-int(FO_B) collapses to FO with order. In contrast, our results imply that if B contains the order and the range of a polynomial of degree at least two, then R-cl(FO_B) includes all languages in DLOGTIME-uniform TC^0
    corecore