15 research outputs found

    Generalized Vietoris Bisimulations

    Full text link
    We introduce and study bisimulations for coalgebras on Stone spaces [14]. Our notion of bisimulation is sound and complete for behavioural equivalence, and generalizes Vietoris bisimulations [4]. The main result of our paper is that bisimulation for a Stone\mathbf{Stone} coalgebra is the topological closure of bisimulation for the underlying Set\mathbf{Set} coalgebra

    Geometric constructions preserve fibrations

    Full text link
    Let C\mathcal{C} be a representable 2-category, and T∙\mathfrak{T}_\bullet a 2-endofunctor of the arrow 2-category C↓\mathcal{C}^\downarrow such that (i) codT∙=cod\mathsf{cod} \mathfrak{T}_\bullet = \mathsf{cod} and (ii) T∙\mathfrak{T}_\bullet preserves proneness of morphisms in C↓\mathcal{C}^\downarrow. Then T∙\mathfrak{T}_\bullet preserves fibrations and opfibrations in C\mathcal{C}. The proof takes Street's characterization of (e.g.) opfibrations as pseudoalgebras for 2-monads LB\mathfrak{L}_B on slice categories C/B\mathcal{C}/B and develops it by defining a 2-monad L∙\mathfrak{L}_\bullet on C↓\mathcal{C}^\downarrow that takes change of base into account, and uses known results on the lifting of 2-functors to pseudoalgebras.Comment: 29 page

    Coalgebraic Geometric Logic: Basic Theory

    Get PDF
    Using the theory of coalgebra, we introduce a uniform framework for adding modalities to the language of propositional geometric logic. Models for this logic are based on coalgebras for an endofunctor on some full subcategory of the category of topological spaces and continuous functions. We investigate derivation systems, soundness and completeness for such geometric modal logics, and we we specify a method of lifting an endofunctor on Set, accompanied by a collection of predicate liftings, to an endofunctor on the category of topological spaces, again accompanied by a collection of (open) predicate liftings. Furthermore, we compare the notions of modal equivalence, behavioural equivalence and bisimulation on the resulting class of models, and we provide a final object for the corresponding category

    Coalgebraic Fuzzy geometric logic

    Full text link
    The paper aims to develop a framework for coalgebraic fuzzy geometric logic by adding modalities to the language of fuzzy geometric logic. Using the methods of coalgebra, the modal operators are introduced in the language of fuzzy geometric logic. To define the modal operators, we introduce a notion of fuzzy-open predicate lifting. Based on coalgebras for an endofunctor TT on the category Fuzzy-Top\textbf{Fuzzy-Top} of fuzzy topological spaces and fuzzy continuous maps, we build models for the coalgebraic fuzzy geometric logic. Bisimulations for the defined models are discussed in this work

    Coalgebraic Geometric Logic

    Get PDF
    Using the theory of coalgebra, we introduce a uniform framework for adding modalities to the language of propositional geometric logic. Models for this logic are based on coalgebras for an endofunctor T on some full subcategory of the category Top of topological spaces and continuous functions. We compare the notions of modal equivalence, behavioural equivalence and bisimulation on the resulting class of models, and we provide a final object for the corresponding category. Furthermore, we specify a method of lifting an endofunctor on Set, accompanied by a collection of predicate liftings, to an endofunctor on the category of topological spaces

    Coalgebraic Geometric Logic

    Get PDF

    Localic completion of uniform spaces

    Full text link
    We extend the notion of localic completion of generalised metric spaces by Steven Vickers to the setting of generalised uniform spaces. A generalised uniform space (gus) is a set X equipped with a family of generalised metrics on X, where a generalised metric on X is a map from the product of X to the upper reals satisfying zero self-distance law and triangle inequality. For a symmetric generalised uniform space, the localic completion lifts its generalised uniform structure to a point-free generalised uniform structure. This point-free structure induces a complete generalised uniform structure on the set of formal points of the localic completion that gives the standard completion of the original gus with Cauchy filters. We extend the localic completion to a full and faithful functor from the category of locally compact uniform spaces into that of overt locally compact completely regular formal topologies. Moreover, we give an elementary characterisation of the cover of the localic completion of a locally compact uniform space that simplifies the existing characterisation for metric spaces. These results generalise the corresponding results for metric spaces by Erik Palmgren. Furthermore, we show that the localic completion of a symmetric gus is equivalent to the point-free completion of the uniform formal topology associated with the gus. We work in Aczel's constructive set theory CZF with the Regular Extension Axiom. Some of our results also require Countable Choice.Comment: 39 page

    Completeness for the coalgebraic cover modality

    Get PDF
    corecore