93,375 research outputs found

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    Invariant Modules and the Reduction of Nonlinear Partial Differential Equations to Dynamical Systems

    Full text link
    We completely characterize all nonlinear partial differential equations leaving a given finite-dimensional vector space of analytic functions invariant. Existence of an invariant subspace leads to a re duction of the associated dynamical partial differential equations to a system of ordinary differential equations, and provide a nonlinear counterpart to quasi-exactly solvable quantum Hamiltonians. These results rely on a useful extension of the classical Wronskian determinant condition for linear independence of functions. In addition, new approaches to the characterization o f the annihilating differential operators for spaces of analytic functions are presented.Comment: 28 pages. To appear in Advances in Mathematic

    Fuchs versus Painlev\'e

    Full text link
    We briefly recall the Fuchs-Painlev\'e elliptic representation of Painlev\'e VI. We then show that the polynomiality of the expressions of the correlation functions (and form factors) in terms of the complete elliptic integral of the first and second kind, K K and E E, is a straight consequence of the fact that the differential operators corresponding to the entries of Toeplitz-like determinants, are equivalent to the second order operator LE L_E which has E E as solution (or, for off-diagonal correlations to the direct sum of LE L_E and d/dt d/dt). We show that this can be generalized, mutatis mutandis, to the anisotropic Ising model. The singled-out second order linear differential operator LE L_E being replaced by an isomonodromic system of two third-order linear partial differential operators associated with Π1 \Pi_1, the Jacobi's form of the complete elliptic integral of the third kind (or equivalently two second order linear partial differential operators associated with Appell functions, where one of these operators can be seen as a deformation of LE L_E). We finally explore the generalizations, to the anisotropic Ising models, of the links we made, in two previous papers, between Painlev\'e non-linear ODE's, Fuchsian linear ODE's and elliptic curves. In particular the elliptic representation of Painlev\'e VI has to be generalized to an ``Appellian'' representation of Garnier systems.Comment: Dedicated to the : Special issue on Symmetries and Integrability of Difference Equations, SIDE VII meeting held in Melbourne during July 200

    Spinors, Jets, and the Einstein Equations

    Get PDF
    Many important features of a field theory, {\it e.g.}, conserved currents, symplectic structures, energy-momentum tensors, {\it etc.}, arise as tensors locally constructed from the fields and their derivatives. Such tensors are naturally defined as geometric objects on the jet space of solutions to the field equations. Modern results from the calculus on jet bundles can be combined with a powerful spinor parametrization of the jet space of Einstein metrics to unravel basic features of the Einstein equations. These techniques have been applied to computation of generalized symmetries and ``characteristic cohomology'' of the Einstein equations, and lead to results such as a proof of non-existence of ``local observables'' for vacuum spacetimes and a uniqueness theorem for the gravitational symplectic structure.Comment: to appear in the proceedings of the Sixth Canadian Conference on General Relativity and Relativistic Astrophysics, 13 pages, uses AMSTeX and AMSppt.st
    • …
    corecore