195 research outputs found

    New variational and multisymplectic formulations of the Euler-Poincar\'e equation on the Virasoro-Bott group using the inverse map

    Full text link
    We derive a new variational principle, leading to a new momentum map and a new multisymplectic formulation for a family of Euler--Poincar\'e equations defined on the Virasoro-Bott group, by using the inverse map (also called `back-to-labels' map). This family contains as special cases the well-known Korteweg-de Vries, Camassa-Holm, and Hunter-Saxton soliton equations. In the conclusion section, we sketch opportunities for future work that would apply the new Clebsch momentum map with 22-cocycles derived here to investigate a new type of interplay among nonlinearity, dispersion and noise.Comment: 19 page

    Splitting and composition methods in the numerical integration of differential equations

    Get PDF
    We provide a comprehensive survey of splitting and composition methods for the numerical integration of ordinary differential equations (ODEs). Splitting methods constitute an appropriate choice when the vector field associated with the ODE can be decomposed into several pieces and each of them is integrable. This class of integrators are explicit, simple to implement and preserve structural properties of the system. In consequence, they are specially useful in geometric numerical integration. In addition, the numerical solution obtained by splitting schemes can be seen as the exact solution to a perturbed system of ODEs possessing the same geometric properties as the original system. This backward error interpretation has direct implications for the qualitative behavior of the numerical solution as well as for the error propagation along time. Closely connected with splitting integrators are composition methods. We analyze the order conditions required by a method to achieve a given order and summarize the different families of schemes one can find in the literature. Finally, we illustrate the main features of splitting and composition methods on several numerical examples arising from applications.Comment: Review paper; 56 pages, 6 figures, 8 table

    Multi-Symplectic Integrators for Nonlinear Wave Equations

    Get PDF
    Symplectic (area-preserving) integrators for Hamiltonian ordinary differential equations have shown to be robust, efficient and accurate in long-term calculations. In this thesis, we show how symplectic integrators have a natural generalization to Hamiltonian PDEs by introducing the concept of multi-symplectic partial differential equations (PDEs). In particular, we show that multi-symplectic PDEs have an underlying spatio-temporal multi-symplectic structure characterized by a multi-symplectic conservation law MSCL). Then multi-symplectic integrators (MSIs) are numerical schemes that preserve exactly the MSCL. Remarkably, we demonstrate that, although not designed to do so, MSIs preserve very well other associated local conservation laws and global invariants, such as the energy and the momentum, for very long periods of time. We develop two types of MSIs, based on finite differences and Fourier spectral approximations, and illustrate their superior performance over traditional integrators by deriving new numerical schemes to the well known 1D nonlinear Schrödinger and sine-Gordon equations and the 2D Gross-Pitaevskii equation. In sensitive regimes, the spectral MSIs are not only more accurate but are better at capturing the spatial features of the solutions. In particular, for the sine-Gordon equation we show that its phase space, as measured by the nonlinear spectrum associated with it, is better preserved by spectral MSIs than by spectral non-symplectic Runge-Kutta integrators. Finally, to further understand the improved performance of MSIs, we develop a backward error analysis of the multi-symplectic centered-cell discretization for the nonlinear Schrödinger equation. We verify that the numerical solution satisfies to higher order a nearby modified multi-symplectic PDE and its modified multi-symplectic energy conservation law. This implies, that although the numerical solution is an approximation, it retains the key feature of the original PDE, namely its multi-symplectic structure

    Energy preserving integration of bi-Ham

    Get PDF
    The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the long term preservation of the Hamiltonians and Casimir integrals, which is essential in simulating waves and solitons. Dispersive properties of the AVF integrator are investigated for the linearized equations to examine the nonlinear dynamics after discreization.Publisher's Versio

    Multisymplectic geometry, variational integrators, and nonlinear PDEs

    Full text link
    This paper presents a geometric-variational approach to continuous and discrete mechanics and field theories. Using multisymplectic geometry, we show that the existence of the fundamental geometric structures as well as their preservation along solutions can be obtained directly from the variational principle. In particular, we prove that a unique multisymplectic structure is obtained by taking the derivative of an action function, and use this structure to prove covariant generalizations of conservation of symplecticity and Noether's theorem. Natural discretization schemes for PDEs, which have these important preservation properties, then follow by choosing a discrete action functional. In the case of mechanics, we recover the variational symplectic integrators of Veselov type, while for PDEs we obtain covariant spacetime integrators which conserve the corresponding discrete multisymplectic form as well as the discrete momentum mappings corresponding to symmetries. We show that the usual notion of symplecticity along an infinite-dimensional space of fields can be naturally obtained by making a spacetime split. All of the aspects of our method are demonstrated with a nonlinear sine-Gordon equation, including computational results and a comparison with other discretization schemes.Comment: LaTeX2E, 52 pages, 11 figures, to appear in Comm. Math. Phy

    Geometric numerical schemes for the KdV equation

    Get PDF
    Geometric discretizations that preserve certain Hamiltonian structures at the discrete level has been proven to enhance the accuracy of numerical schemes. In particular, numerous symplectic and multi-symplectic schemes have been proposed to solve numerically the celebrated Korteweg-de Vries (KdV) equation. In this work, we show that geometrical schemes are as much robust and accurate as Fourier-type pseudo-spectral methods for computing the long-time KdV dynamics, and thus more suitable to model complex nonlinear wave phenomena.Comment: 22 pages, 14 figures, 74 references. Other author's papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh

    Multi-Symplectic Simulation on Soliton-Collision for Nonlinear Perturbed Schrödinger Equation

    Get PDF
    Seeking solitary wave solutions and revealing their interactional characteristics for nonlinear evolution equations help us lot to comprehend the motion laws of the microparticles. As a local nonlinear dynamic behavior, the soliton-collision is difficult to be reproduced numerically. In this paper, the soliton-collision process in the nonlinear perturbed Schrödinger equation is simulated employing the multi-symplectic method. The multi-symplectic formulations are derived including the multi-symplectic form and three local conservation laws of the nonlinear perturbed Schrödinger equation. Employing the implicit midpoint rule, we construct a multi-symplectic scheme, which is equivalent to the Preissmann box scheme, for the nonlinear perturbed Schrödinger equation. The elegant structure-preserving properties of the multi-symplectic scheme are illustrated by the tiny maximum absolute residual of the discrete multi-symplectic structure at each time step in the numerical simulations. The effects of the perturbation strength on the soliton-collision in the nonlinear perturbed Schrödinger equation are reported in the numerical results in detail
    corecore