29,172 research outputs found

    Partial self-consistency and analyticity in many-body perturbation theory: particle number conservation and a generalized sum rule

    Full text link
    We consider a general class of approximations which guarantees the conservation of particle number in many-body perturbation theory. To do this we extend the concept of Φ\Phi-derivability for the self-energy Σ\Sigma to a larger class of diagrammatic terms in which only some of the Green's function lines contain the fully dressed Green's function GG. We call the corresponding approximations for Σ\Sigma partially Φ\Phi-derivable. A special subclass of such approximations, which are gauge-invariant, is obtained by dressing loops in the diagrammatic expansion of Φ\Phi consistently with GG. These approximations are number conserving but do not have to fulfill other conservation laws, such as the conservation of energy and momentum. From our formalism we can easily deduce if commonly used approximations will fulfill the continuity equation, which implies particle number conservation. We further show how the concept of partial Φ\Phi-derivability plays an important role in the derivation of a generalized sum rule for the particle number, which reduces to the Luttinger-Ward theorem in the case of a homogeneous electron gas, and the Friedel sum rule in the case of the Anderson model. To do this we need to ensure that the Green's function has certain complex analytic properties, which can be guaranteed if the spectral function is positive semi-definite.The latter property can be ensured for a subset of partially Φ\Phi-derivable approximations for the self-energy, namely those that can be constructed from squares of so-called half-diagrams. In case the analytic requirements are not fulfilled we highlight a number of subtle issues related to branch cuts, pole structure and multi-valuedness. We also show that various schemes of computing the particle number are consistent for particle number conserving approximations.Comment: Minor changes, corrected typo

    Certified lattice reduction

    Get PDF
    Quadratic form reduction and lattice reduction are fundamental tools in computational number theory and in computer science, especially in cryptography. The celebrated Lenstra-Lenstra-Lov\'asz reduction algorithm (so-called LLL) has been improved in many ways through the past decades and remains one of the central methods used for reducing integral lattice basis. In particular, its floating-point variants-where the rational arithmetic required by Gram-Schmidt orthogonalization is replaced by floating-point arithmetic-are now the fastest known. However, the systematic study of the reduction theory of real quadratic forms or, more generally, of real lattices is not widely represented in the literature. When the problem arises, the lattice is usually replaced by an integral approximation of (a multiple of) the original lattice, which is then reduced. While practically useful and proven in some special cases, this method doesn't offer any guarantee of success in general. In this work, we present an adaptive-precision version of a generalized LLL algorithm that covers this case in all generality. In particular, we replace floating-point arithmetic by Interval Arithmetic to certify the behavior of the algorithm. We conclude by giving a typical application of the result in algebraic number theory for the reduction of ideal lattices in number fields.Comment: 23 page

    Self-energy Effects in the Superfluidity of Neutron Matter

    Get PDF
    The superfluidity of neutron matter in the channel 1S0^1 S_0 is studied by taking into account the effect of the ground-state correlations in the self-energy. To this purpose the gap equation has been solved within the generalized Gorkov approach. A sizeable suppression of the energy gap is driven by the quasi-particle strength around the Fermi surface.Comment: 8 pages and 3 figure

    Bootstrapping O(N)O(N) Vector Models with Four Supercharges in 3d43 \leq d \leq4

    Get PDF
    We analyze the conformal bootstrap constraints in theories with four supercharges and a global O(N)×U(1)O(N) \times U(1) flavor symmetry in 3d43 \leq d \leq 4 dimensions. In particular, we consider the 4-point function of O(N)O(N)-fundamental chiral operators ZiZ_i that have no chiral primary in the O(N)O(N)-singlet sector of their OPE. We find features in our numerical bounds that nearly coincide with the theory of N+1N+1 chiral super-fields with superpotential W=Xi=1NZi2W = X \sum_{i=1}^N Z_i^2, as well as general bounds on SCFTs where i=1NZi2\sum_{i=1}^N Z_i^2 vanishes in the chiral ring.Comment: 25 pages, 8 figure

    The two-fluid model with superfluid entropy

    Full text link
    The two-fluid model of liquid helium is generalized to the case that the superfluid fraction has a small entropy content. We present theoretical arguments in favour of such a small superfluid entropy. In the generalized two-fluid model various sound modes of He  \;II are investigated. In a superleak carrying a persistent current the superfluid entropy leads to a new sound mode which we call sixth sound. The relation between the sixth sound and the superfluid entropy is discussed in detail.Comment: 22 pages, latex, published in Nuovo Cimento 16 D (1994) 37
    corecore