100 research outputs found

    Stabilization via generalized homogeneous approximations

    Get PDF
    We introduce a notion of generalized homogeneous approximation at the origin and at infinity which extends the classical notions and captures a large class of nonlinear systems, including (lower and upper) triangular systems. Exploiting this extension and although this extension does not preserve the basic properties of the classical notion, we give basic results concerning stabilization and robustness of nonlinear systems, by designing a homogeneous (in the generalized sense) feedback controller which globally asymptotically stabilizes a chain of power integrators and makes it the dominant part at infinity and at the origin (in the generalized sense) of the dynamics. Stability against nonlinear perturbation follows from domination arguments

    Exponential Stabilization of Driftless Nonlinear Control Systems

    Get PDF
    This dissertation lays the foundation for practical exponential stabilization of driftless control systems. Driftless systems have the form, xdot = X1(x)u1 + .... + Xm(x)um, x ∈ ℝ^n Such systems arise when modeling mechanical systems with nonholonomic constraints. In engineering applications it is often required to maintain the mechanical system around a desired configuration. This task is treated as a stabilization problem where the desired configuration is made an asymptotically stable equilibrium point. The control design is carried out on an approximate system. The approximation process yields a nilpotent set of input vector fields which, in a special coordinate system, are homogeneous with respect to a non-standard dilation. Even though the approximation can be given a coordinate-free interpretation, the homogeneous structure is useful to exploit: the feedbacks are required to be homogeneous functions and thus preserve the homogeneous structure in the closed-loop system. The stability achieved is called p-exponential stability. The closed-loop system is stable and the equilibrium point is exponentially attractive. This extended notion of exponential stability is required since the feedback, and hence the closed-loop system, is not Lipschitz. However, it is shown that the convergence rate of a Lipschitz closed-loop driftless system cannot be bounded by an exponential envelope. The synthesis methods generate feedbacks which are smooth on ℝ^n \ {0}. The solutions of the closed-loop system are proven to be unique in this case. In addition, the control inputs for many driftless systems are velocities. For this class of systems it is more appropriate for the control law to specify actuator forces instead of velocities. We have extended the kinematic velocity controllers to controllers which command forces and still p-exponentially stabilize the system. Perhaps the ultimate justification of the methods proposed in this thesis are the experimental results. The experiments demonstrate the superior convergence performance of the p-exponential stabilizers versus traditional smooth feedbacks. The experiments also highlight the importance of transformation conditioning in the feedbacks. Other design issues, such as scaling the measured states to eliminate hunting, are discussed. The methods in this thesis bring the practical control of strongly nonlinear systems one step closer

    Teleoperated and cooperative robotics : a performance oriented control design

    Get PDF

    Synchrony and bifurcations in coupled dynamical systems and effects of time delay

    Get PDF
    Dynamik auf Netzwerken ist ein mathematisches Feld, das in den letzten Jahrzehnten schnell gewachsen ist und Anwendungen in zahlreichen Disziplinen wie z.B. Physik, Biologie und Soziologie findet. Die Funktion vieler Netzwerke hĂ€ngt von der FĂ€higkeit ab, die Elemente des Netzwerkes zu synchronisieren. Mit anderen Worten, die Existenz und die transversale StabilitĂ€t der synchronen Mannigfaltigkeit sind zentrale Eigenschaften. Erst seit einigen Jahren wird versucht, den verwickelten Zusammenhang zwischen der Kopplungsstruktur und den StabilitĂ€tseigenschaften synchroner ZustĂ€nde zu verstehen. Genau das ist das zentrale Thema dieser Arbeit. ZunĂ€chst prĂ€sentiere ich erste Ergebnisse zur Klassifizierung der Kanten eines gerichteten Netzwerks bezĂŒglich ihrer Bedeutung fĂŒr die StabilitĂ€t des synchronen Zustands. Folgend untersuche ich ein komplexes Verzweigungsszenario in einem gerichteten Ring von Stuart-Landau Oszillatoren und zeige, dass das Szenario persistent ist, wenn dem Netzwerk eine schwach gewichtete Kante hinzugefĂŒgt wird. Daraufhin untersuche ich synchrone ZustĂ€nde in Ringen von Phasenoszillatoren die mit Zeitverzögerung gekoppelt sind. Ich bespreche die Koexistenz synchroner Lösungen und analysiere deren StabilitĂ€t und Verzweigungen. Weiter zeige ich, dass eine Zeitverschiebung genutzt werden kann, um Muster im Ring zu speichern und wiederzuerkennen. Diese Zeitverschiebung untersuche ich daraufhin fĂŒr beliebige Kopplungsstrukturen. Ich zeige, dass invariante Mannigfaltigkeiten des Flusses sowie ihre StabilitĂ€t unter der Zeitverschiebung erhalten bleiben. DarĂŒber hinaus bestimme ich die minimale Anzahl von Zeitverzögerungen, die gebraucht werden, um das System Ă€quivalent zu beschreiben. Schließlich untersuche ich das auffĂ€llige PhĂ€nomen eines nichtstetigen Übergangs zu SynchronizitĂ€t in Klassen großer Zufallsnetzwerke indem ich einen kĂŒrzlich eingefĂŒhrten Zugang zur Beschreibung großer Zufallsnetzwerke auf den Fall zeitverzögerter Kopplungen verallgemeinere.Since a couple of decades, dynamics on networks is a rapidly growing branch of mathematics with applications in various disciplines such as physics, biology or sociology. The functioning of many networks heavily relies on the ability to synchronize the network’s nodes. More precisely, the existence and the transverse stability of the synchronous manifold are essential properties. It was only in the last few years that people tried to understand the entangled relation between the coupling structure of a network, given by a (di-)graph, and the stability properties of synchronous states. This is the central theme of this dissertation. I first present results towards a classification of the links in a directed, diffusive network according to their impact on the stability of synchronization. Then I investigate a complex bifurcation scenario observed in a directed ring of Stuart-Landau oscillators. I show that under the addition of a single weak link, this scenario is persistent. Subsequently, I investigate synchronous patterns in a directed ring of phase oscillators coupled with time delay. I discuss the coexistence of multiple of synchronous solutions and investigate their stability and bifurcations. I apply these results by showing that a certain time-shift transformation can be used in order to employ the ring as a pattern recognition device. Next, I investigate the same time-shift transformation for arbitrary coupling structures in a very general setting. I show that invariant manifolds of the flow together with their stability properties are conserved under the time-shift transformation. Furthermore, I determine the minimal number of delays needed to equivalently describe the system’s dynamics. Finally, I investigate a peculiar phenomenon of non-continuous transition to synchrony observed in certain classes of large random networks, generalizing a recently introduced approach for the description of large random networks to the case of delayed couplings

    Differential Models, Numerical Simulations and Applications

    Get PDF
    This Special Issue includes 12 high-quality articles containing original research findings in the fields of differential and integro-differential models, numerical methods and efficient algorithms for parameter estimation in inverse problems, with applications to biology, biomedicine, land degradation, traffic flows problems, and manufacturing systems

    Information Geometry

    Get PDF
    This Special Issue of the journal Entropy, titled “Information Geometry I”, contains a collection of 17 papers concerning the foundations and applications of information geometry. Based on a geometrical interpretation of probability, information geometry has become a rich mathematical field employing the methods of differential geometry. It has numerous applications to data science, physics, and neuroscience. Presenting original research, yet written in an accessible, tutorial style, this collection of papers will be useful for scientists who are new to the field, while providing an excellent reference for the more experienced researcher. Several papers are written by authorities in the field, and topics cover the foundations of information geometry, as well as applications to statistics, Bayesian inference, machine learning, complex systems, physics, and neuroscience
    • 

    corecore