10,507 research outputs found

    On the similarities between generalized rank and Hamming weights and their applications to network coding

    Full text link
    Rank weights and generalized rank weights have been proven to characterize error and erasure correction, and information leakage in linear network coding, in the same way as Hamming weights and generalized Hamming weights describe classical error and erasure correction, and information leakage in wire-tap channels of type II and code-based secret sharing. Although many similarities between both cases have been established and proven in the literature, many other known results in the Hamming case, such as bounds or characterizations of weight-preserving maps, have not been translated to the rank case yet, or in some cases have been proven after developing a different machinery. The aim of this paper is to further relate both weights and generalized weights, show that the results and proofs in both cases are usually essentially the same, and see the significance of these similarities in network coding. Some of the new results in the rank case also have new consequences in the Hamming case

    On the Relationship Between the Generalized Equality Classifier and ART 2 Neural Networks

    Full text link
    In this paper, we introduce the Generalized Equality Classifier (GEC) for use as an unsupervised clustering algorithm in categorizing analog data. GEC is based on a formal definition of inexact equality originally developed for voting in fault tolerant software applications. GEC is defined using a metric space framework. The only parameter in GEC is a scalar threshold which defines the approximate equality of two patterns. Here, we compare the characteristics of GEC to the ART2-A algorithm (Carpenter, Grossberg, and Rosen, 1991). In particular, we show that GEC with the Hamming distance performs the same optimization as ART2. Moreover, GEC has lower computational requirements than AR12 on serial machines

    A Novel Progressive Multi-label Classifier for Classincremental Data

    Full text link
    In this paper, a progressive learning algorithm for multi-label classification to learn new labels while retaining the knowledge of previous labels is designed. New output neurons corresponding to new labels are added and the neural network connections and parameters are automatically restructured as if the label has been introduced from the beginning. This work is the first of the kind in multi-label classifier for class-incremental learning. It is useful for real-world applications such as robotics where streaming data are available and the number of labels is often unknown. Based on the Extreme Learning Machine framework, a novel universal classifier with plug and play capabilities for progressive multi-label classification is developed. Experimental results on various benchmark synthetic and real datasets validate the efficiency and effectiveness of our proposed algorithm.Comment: 5 pages, 3 figures, 4 table

    On the Relationship Between the Generalized Equality Classifier and ART 2 Neural Networks

    Full text link
    In this paper, we introduce the Generalized Equality Classifier (GEC) for use as an unsupervised clustering algorithm in categorizing analog data. GEC is based on a formal definition of inexact equality originally developed for voting in fault tolerant software applications. GEC is defined using a metric space framework. The only parameter in GEC is a scalar threshold which defines the approximate equality of two patterns. Here, we compare the characteristics of GEC to the ART2-A algorithm (Carpenter, Grossberg, and Rosen, 1991). In particular, we show that GEC with the Hamming distance performs the same optimization as ART2. Moreover, GEC has lower computational requirements than AR12 on serial machines
    • …
    corecore