9,402 research outputs found

    The Generalized Fractional Calculus of Variations

    Full text link
    We review the recent generalized fractional calculus of variations. We consider variational problems containing generalized fractional integrals and derivatives and study them using indirect methods. In particular, we provide necessary optimality conditions of Euler-Lagrange type for the fundamental and isoperimetric problems, natural boundary conditions, and Noether type theorems.Comment: This is a preprint of a paper whose final and definite form will appear in Southeast Asian Bulletin of Mathematics (2014

    The Variable-Order Fractional Calculus of Variations

    Full text link
    This book intends to deepen the study of the fractional calculus, giving special emphasis to variable-order operators. It is organized in two parts, as follows. In the first part, we review the basic concepts of fractional calculus (Chapter 1) and of the fractional calculus of variations (Chapter 2). In Chapter 1, we start with a brief overview about fractional calculus and an introduction to the theory of some special functions in fractional calculus. Then, we recall several fractional operators (integrals and derivatives) definitions and some properties of the considered fractional derivatives and integrals are introduced. In the end of this chapter, we review integration by parts formulas for different operators. Chapter 2 presents a short introduction to the classical calculus of variations and review different variational problems, like the isoperimetric problems or problems with variable endpoints. In the end of this chapter, we introduce the theory of the fractional calculus of variations and some fractional variational problems with variable-order. In the second part, we systematize some new recent results on variable-order fractional calculus of (Tavares, Almeida and Torres, 2015, 2016, 2017, 2018). In Chapter 3, considering three types of fractional Caputo derivatives of variable-order, we present new approximation formulas for those fractional derivatives and prove upper bound formulas for the errors. In Chapter 4, we introduce the combined Caputo fractional derivative of variable-order and corresponding higher-order operators. Some properties are also given. Then, we prove fractional Euler-Lagrange equations for several types of fractional problems of the calculus of variations, with or without constraints.Comment: The final authenticated version of this preprint is available online as a SpringerBrief in Applied Sciences and Technology at [https://doi.org/10.1007/978-3-319-94006-9]. In this version some typos, detected by the authors while reading the galley proofs, were corrected, SpringerBriefs in Applied Sciences and Technology, Springer, Cham, 201

    Fractional variational calculus of variable order

    Full text link
    We study the fundamental problem of the calculus of variations with variable order fractional operators. Fractional integrals are considered in the sense of Riemann-Liouville while derivatives are of Caputo type.Comment: Submitted 26-Sept-2011; accepted 18-Oct-2011; withdrawn by the authors 21-Dec-2011; resubmitted 27-Dec-2011; revised 20-March-2012; accepted 13-April-2012; to 'Advances in Harmonic Analysis and Operator Theory', The Stefan Samko Anniversary Volume (Eds: A. Almeida, L. Castro, F.-O. Speck), Operator Theory: Advances and Applications, Birkh\"auser Verlag (http://www.springer.com/series/4850

    A Generalized Fractional Calculus of Variations

    Full text link
    We study incommensurate fractional variational problems in terms of a generalized fractional integral with Lagrangians depending on classical derivatives and generalized fractional integrals and derivatives. We obtain necessary optimality conditions for the basic and isoperimetric problems, transversality conditions for free boundary value problems, and a generalized Noether type theorem.Comment: This is a preprint of a paper whose final and definitive form will appear in Control and Cybernetics. Paper submitted 01-Oct-2012; revised 25-March-2013; accepted for publication 17-April-201

    Fractional Noether's theorem in the Riesz-Caputo sense

    Full text link
    We prove a Noether's theorem for fractional variational problems with Riesz-Caputo derivatives. Both Lagrangian and Hamiltonian formulations are obtained. Illustrative examples in the fractional context of the calculus of variations and optimal control are given.Comment: Accepted (25/Jan/2010) for publication in Applied Mathematics and Computatio

    The generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative

    Get PDF
    This paper presents necessary and sufficient optimality conditions for problems of the fractional calculus of variations with a Lagrangian depending on the free end-points. The fractional derivatives are defined in the sense of Caputo.Comment: Accepted (19 February 2010) for publication in Computers and Mathematics with Application

    Fractional isoperimetric Noether's theorem in the Riemann-Liouville sense

    Full text link
    We prove Noether-type theorems for fractional isoperimetric variational problems with Riemann-Liouville derivatives. Both Lagrangian and Hamiltonian formulations are obtained. Illustrative examples, in the fractional context of the calculus of variations, are discussed.Comment: Submitted 12-Oct-2012; revised 05-Jan-2013; accepted 23-Jan-2013; for publication in Reports on Mathematical Physics. arXiv admin note: substantial text overlap with arXiv:1001.450
    corecore