259,171 research outputs found

    Multirate sampled-data yaw-damper and modal suppression system design

    Get PDF
    A multirate control law synthesized algorithm based on an infinite-time quadratic cost function, was developed along with a method for analyzing the robustness of multirate systems. A generalized multirate sampled-data control law structure (GMCLS) was introduced. A new infinite-time-based parameter optimization multirate sampled-data control law synthesis method and solution algorithm were developed. A singular-value-based method for determining gain and phase margins for multirate systems was also developed. The finite-time-based parameter optimization multirate sampled-data control law synthesis algorithm originally intended to be applied to the aircraft problem was instead demonstrated by application to a simpler problem involving the control of the tip position of a two-link robot arm. The GMCLS, the infinite-time-based parameter optimization multirate control law synthesis method and solution algorithm, and the singular-value based method for determining gain and phase margins were all demonstrated by application to the aircraft control problem originally proposed for this project

    High-level Programming via Generalized Planning and LTL Synthesis

    Get PDF
    We look at program synthesis where the aim is to automatically synthesize a controller that operates on data structures and from which a concrete program can be easily derived. We do not aim at a fully-automatic process or tool that produces a program meeting a given specification of the program’s behaviour. Rather, we aim at the design of a clear and well- founded approach for supporting programmers at the design and implementation phases. Concretely, we first show that a program synthesis task can be modeled as a generalized planning problem. This is done at an abstraction level where the involved data structures are seen as black-boxes that can be interfaced with actions and observations, the first corresponding to the operations and the second to the queries provided by the data structure. The abstraction level is high enough to capture intuitive and common assumptions as well as general and simple strategies used by programmers, and yet it contains sufficient structure to support the automated generation of concrete solutions (in the form of controllers). From such controllers and the use of standard data structures, an actual program in a general language like C++ or Python can be easily obtained. Then, we discuss how the resulting generalized planning problem can be reduced to an LTL synthesis problem, thus making available any LTL synthesis engine for obtaining the controllers. We illustrate the effectiveness of the approach on a series of examples

    Analytical and experimental study of vibrations in a gear transmission

    Get PDF
    An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at the NASA Lewis Research Center. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. The modal synthesis method is used in solving the overall dynamics of the system. Locally each rotor-gear stage is modeled as an individual rotor-bearing system using the matrix transfer technique. The dynamics of each individual rotor are coupled with other rotor stages through the nonlinear gear mesh forces and with the gearbox structure through bearing support systems. The modal characteristics of the gearbox structure are evaluated using the finite element procedure. A variable time steping integration routine is used to calculate the overall time transient behavior of the system in modal coordinates. The global dynamic behavior of the system is expressed in a generalized coordinate system. Transient and steady state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single mesh gear noise test rig is modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The comparison of system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement

    Analysis of nonlinear structures via mode synthesis

    Get PDF
    An effective procedure for NASTRAN was developed that permits any number of substructures of any size to be synthesized for the purpose of developing normal modes of vibration of the complete structural system. The technique is extended to permit modal transient analysis of the subdivided system. This latter procedure permits the use of NASTRAN's ability to include nonlinear forces in the problem. The five-phase process is accomplished using standard NASTRAN rigid formats with problem-independent alter packages and DMAP sequences

    Generalized Fast-Convolution-based Filtered-OFDM: Techniques and Application to 5G New Radio

    Get PDF
    This paper proposes a generalized model and methods for fast-convolution (FC)-based waveform generation and processing with specific applications to fifth generation new radio (5G-NR). Following the progress of 5G-NR standardization in 3rd generation partnership project (3GPP), the main focus is on subband-filtered cyclic prefix (CP) orthogonal frequency-division multiplexing (OFDM) processing with specific emphasis on spectrally well localized transmitter processing. Subband filtering is able to suppress the interference leakage between adjacent subbands, thus supporting different numerologies for so-called bandwidth parts as well as asynchronous multiple access. The proposed generalized FC scheme effectively combines overlapped block processing with time- and frequency-domain windowing to provide highly selective subband filtering with very low intrinsic interference level. Jointly optimized multi-window designs with different allocation sizes and design parameters are compared in terms of interference levels and implementation complexity. The proposed methods are shown to clearly outperform the existing state-of-the-art windowing and filtering-based methods.Comment: To appear in IEEE Transactions on Signal Processin

    UV micro-irradiation of the Chinese hamster cell nucleus and caffeine post-treatment immunocytochemical localization of DNA photolesions in cells with partial and generalized chromosome shattering

    Get PDF
    UV micro-irradiation of a small part of the Chinese hamster nucleus and caffeine post-incubation often results in shattered chromosomes at the first post-irradiation mitosis. In some of these mitotic cells, chromosome shattering is restricted to a few chromosomes spatially related in a small area of the metaphase spread; in others, shattering includes the whole chromosome complement. These 2 types of damage have been called partial and generalized chromosome shattering (PCS and GCS). Using antisera that specifically react with UV-irradiated DNA, we identified micro-irradiated chromatin in interphase nuclei and in mitotic cells with PCS or GCS by indirect immunofluorescence microscopy. In PCS, immunofluorescence staining was found in the damaged area, while the surrounding intact chromosomes were not stained. In GCS, staining was also restricted to a small region of the shattered chromosome complement. In other experiments, cells synchronized in G1 were micro-irradiated in the nucleus, pulse-labelled with [3H]thymidine and post-incubated with caffeine. Autoradiographs of cells with GCS showed unscheduled DNA synthesis restricted to a small chromatin region. Our data present direct evidence that the distribution of DNA photolesions does not coincide with the sites of chromosomal damage in GCS. As a working hypothesis, we propose that an indirect mechanism is involved in the induction of GCS by which DNA photolesions in a small nuclear segment induce shattering of both micro-irradiated and non-irradiated chromosomes

    ℋ∞ optimization with spatial constraints

    Get PDF
    A generalized ℋ∞ synthesis problem where non-euclidian spatial norms on the disturbances and output error are used is posed and solved. The solution takes the form of a linear matrix inequality. Some problems which fall into this class are presented. In particular, solutions are presented to two problems: a variant of ℋ∞ synthesis where norm constraints on each component of the disturbance can be imposed, and synthesis for a certain class of robust performance problems

    Classical sampling theorems in the context of multirate and polyphase digital filter bank structures

    Get PDF
    The recovery of a signal from so-called generalized samples is a problem of designing appropriate linear filters called reconstruction (or synthesis) filters. This relationship is reviewed and explored. Novel theorems for the subsampling of sequences are derived by direct use of the digital-filter-bank framework. These results are related to the theory of perfect reconstruction in maximally decimated digital-filter-bank systems. One of the theorems pertains to the subsampling of a sequence and its first few differences and its subsequent stable reconstruction at finite cost with no error. The reconstruction filters turn out to be multiplierless and of the FIR (finite impulse response) type. These ideas are extended to the case of two-dimensional signals by use of a Kronecker formalism. The subsampling of bandlimited sequences is also considered. A sequence x(n ) with a Fourier transform vanishes for |ω|&ges;Lπ/M, where L and M are integers with L<M, can in principle be represented by reducing the data rate by the amount M/L. The digital polyphase framework is used as a convenient tool for the derivation as well as mechanization of the sampling theorem
    corecore