43 research outputs found

    Short-Term Wind Speed Forecasting via Stacked Extreme Learning Machine With Generalized Correntropy

    Get PDF
    Recently, wind speed forecasting as an effective computing technique plays an important role in advancing industry informatics, while dealing with these issues of control and operation for renewable power systems. However, it is facing some increasing difficulties to handle the large-scale dataset generated in these forecasting applications, with the purpose of ensuring stable computing performance. In response to such limitation, this paper proposes a more practical approach through the combination of extreme-learning machine (ELM) method and deep-learning model. ELM is a novel computing paradigm that enables the neural network (NN) based learning to be achieved with fast training speed and good generalization performance. The stacked ELM (SELM) is an advanced ELM algorithm under deep-learning framework, which works efficiently on memory consumption decrease. In this paper, an enhanced SELM is accordingly developed via replacing the Euclidean norm of the mean square error (MSE) criterion in ELM with the generalized correntropy criterion to further improve the forecasting performance. The advantage of the enhanced SELM with generalized correntropy to achieve better forecasting performance mainly relies on the following aspect. Generalized correntropy is a stable and robust nonlinear similarity measure while employing machine learning method to forecast wind speed, where the outliers may exist in some industrially measured values. Specifically, the experimental results of short-term and ultra-short-term forecasting on real wind speed data show that the proposed approach can achieve better computing performance compared with other traditional and more recent methods

    Quantized Minimum Error Entropy Criterion

    Full text link
    Comparing with traditional learning criteria, such as mean square error (MSE), the minimum error entropy (MEE) criterion is superior in nonlinear and non-Gaussian signal processing and machine learning. The argument of the logarithm in Renyis entropy estimator, called information potential (IP), is a popular MEE cost in information theoretic learning (ITL). The computational complexity of IP is however quadratic in terms of sample number due to double summation. This creates computational bottlenecks especially for large-scale datasets. To address this problem, in this work we propose an efficient quantization approach to reduce the computational burden of IP, which decreases the complexity from O(N*N) to O (MN) with M << N. The new learning criterion is called the quantized MEE (QMEE). Some basic properties of QMEE are presented. Illustrative examples are provided to verify the excellent performance of QMEE

    A Unified Weight Learning and Low-Rank Regression Model for Robust Complex Error Modeling

    Full text link
    One of the most important problems in regression-based error model is modeling the complex representation error caused by various corruptions and environment changes in images. For example, in robust face recognition, images are often affected by varying types and levels of corruptions, such as random pixel corruptions, block occlusions, or disguises. However, existing works are not robust enough to solve this problem due to they cannot model the complex corrupted errors very well. In this paper, we address this problem by a unified sparse weight learning and low-rank approximation regression model, which enables the random noises and contiguous occlusions in images to be treated simultaneously. For the random noise, we define a generalized correntropy (GC) function to match the error distribution. For the structured error caused by occlusions or disguises, we propose a GC function based rank approximation to measure the rank of error matrices. Since the proposed objective function is non-convex, an effective iterative optimization algorithm is developed to achieve the optimal weight learning and low-rank approximation. Extensive experimental results on three public face databases show that the proposed model can fit the error distribution and structure very well, thus obtain better recognition accuracies in comparison with the existing methods

    A Framework of Learning Through Empirical Gain Maximization

    Full text link
    We develop in this paper a framework of empirical gain maximization (EGM) to address the robust regression problem where heavy-tailed noise or outliers may present in the response variable. The idea of EGM is to approximate the density function of the noise distribution instead of approximating the truth function directly as usual. Unlike the classical maximum likelihood estimation that encourages equal importance of all observations and could be problematic in the presence of abnormal observations, EGM schemes can be interpreted from a minimum distance estimation viewpoint and allow the ignorance of those observations. Furthermore, it is shown that several well-known robust nonconvex regression paradigms, such as Tukey regression and truncated least square regression, can be reformulated into this new framework. We then develop a learning theory for EGM, by means of which a unified analysis can be conducted for these well-established but not fully-understood regression approaches. Resulting from the new framework, a novel interpretation of existing bounded nonconvex loss functions can be concluded. Within this new framework, the two seemingly irrelevant terminologies, the well-known Tukey's biweight loss for robust regression and the triweight kernel for nonparametric smoothing, are closely related. More precisely, it is shown that the Tukey's biweight loss can be derived from the triweight kernel. Similarly, other frequently employed bounded nonconvex loss functions in machine learning such as the truncated square loss, the Geman-McClure loss, and the exponential squared loss can also be reformulated from certain smoothing kernels in statistics. In addition, the new framework enables us to devise new bounded nonconvex loss functions for robust learning

    Novel Deep Learning Techniques For Computer Vision and Structure Health Monitoring

    Get PDF
    This thesis proposes novel techniques in building a generic framework for both the regression and classification tasks in vastly different applications domains such as computer vision and civil engineering. Many frameworks have been proposed and combined into a complex deep network design to provide a complete solution to a wide variety of problems. The experiment results demonstrate significant improvements of all the proposed techniques towards accuracy and efficiency

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    A deep learning method using SDA combined with dropout for bearing fault diagnosis

    Get PDF
    The fault diagnosis of a rolling bearing is at present very important to ensure the steadiness of rotating machinery. According to the non-stationary and non-liner characteristics of bearing vibration signals, a large number of approaches for feature extraction and fault classification have been developed. An effective unsupervised self-learning method is proposed to achieve the complicated fault diagnosis of rolling bearing in this paper, which uses stacked denoising autoencoder (SDA) to learn useful feature representations and improve fault pattern classification robustness by corrupting the input data, meanwhile employs “dropout” to prevent the overfitting of hidden units. Finally the high-level feature representations extracted are set as the inputs of softmax classifier to achieve fault classification. Experiments indicate that the deep learning method of SDA combined with dropout has an advantage in fault diagnosis of bearing, and can be applied widely in future

    A Review of Designs and Applications of Echo State Networks

    Full text link
    Recurrent Neural Networks (RNNs) have demonstrated their outstanding ability in sequence tasks and have achieved state-of-the-art in wide range of applications, such as industrial, medical, economic and linguistic. Echo State Network (ESN) is simple type of RNNs and has emerged in the last decade as an alternative to gradient descent training based RNNs. ESN, with a strong theoretical ground, is practical, conceptually simple, easy to implement. It avoids non-converging and computationally expensive in the gradient descent methods. Since ESN was put forward in 2002, abundant existing works have promoted the progress of ESN, and the recently introduced Deep ESN model opened the way to uniting the merits of deep learning and ESNs. Besides, the combinations of ESNs with other machine learning models have also overperformed baselines in some applications. However, the apparent simplicity of ESNs can sometimes be deceptive and successfully applying ESNs needs some experience. Thus, in this paper, we categorize the ESN-based methods to basic ESNs, DeepESNs and combinations, then analyze them from the perspective of theoretical studies, network designs and specific applications. Finally, we discuss the challenges and opportunities of ESNs by summarizing the open questions and proposing possible future works.Comment: 37 pages, 5 figures, 2 table

    An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges

    Full text link
    In many machine learning tasks, learning a good representation of the data can be the key to building a well-performant solution. This is because most learning algorithms operate with the features in order to find models for the data. For instance, classification performance can improve if the data is mapped to a space where classes are easily separated, and regression can be facilitated by finding a manifold of data in the feature space. As a general rule, features are transformed by means of statistical methods such as principal component analysis, or manifold learning techniques such as Isomap or locally linear embedding. From a plethora of representation learning methods, one of the most versatile tools is the autoencoder. In this paper we aim to demonstrate how to influence its learned representations to achieve the desired learning behavior. To this end, we present a series of learning tasks: data embedding for visualization, image denoising, semantic hashing, detection of abnormal behaviors and instance generation. We model them from the representation learning perspective, following the state of the art methodologies in each field. A solution is proposed for each task employing autoencoders as the only learning method. The theoretical developments are put into practice using a selection of datasets for the different problems and implementing each solution, followed by a discussion of the results in each case study and a brief explanation of other six learning applications. We also explore the current challenges and approaches to explainability in the context of autoencoders. All of this helps conclude that, thanks to alterations in their structure as well as their objective function, autoencoders may be the core of a possible solution to many problems which can be modeled as a transformation of the feature space
    corecore