2,543 research outputs found

    Generalized controllers for rigid formation stabilization with application to event-based controller design

    Get PDF
    This paper discusses generalized controllers for rigid formation shape stabilization. We provide unified analysis to show convergence using different controllers reported in the literature, and further prove an exponential stability of the formation system when using the general form of shape controllers. We also show that different agents can use different controllers for controlling different distances to achieve a desired rigid formation, which enables the implementation of heterogeneous agents in practice for formation shape control. We further propose an event-triggered rigid formation control scheme based on the generalized controllers. The triggering condition, event function and convergence analysis are discusse

    Exponential stability for formation control systems with generalized controllers: A unified approach

    Get PDF
    This paper discusses generalized controllers for distance-based rigid formation shape stabilization and aims to provide a unified approach for the convergence analysis. We consider two types of formation control systems according to different characterizations of target formations: minimally rigid target formation and non-minimally rigid target formation. For the former case, we firstly prove the local exponential stability for rigid formation systems when using a general form of shape controllers with certain properties. From this viewpoint, different formation controllers proposed in previous literature can be included in a unified framework. We then extend the result to the case that the target formation is non-minimally rigid, and show that exponential stability of the formation system is still guaranteed with generalized controllers

    Event-Triggered Consensus and Formation Control in Multi-Agent Coordination

    Get PDF
    The focus of this thesis is to study distributed event-triggered control for multi-agent systems (MASs) facing constraints in practical applications. We consider several problems in the field, ranging from event-triggered consensus with information quantization, event-triggered edge agreement under synchronized/unsynchronized clocks, event-triggered leader-follower consensus with Euler-Lagrange agent dynamics and cooperative event-triggered rigid formation control. The first topic is named as event-triggered consensus with quantized relative state measurements. In this topic, we develop two event-triggered controllers with quantized relative state measurements to achieve consensus for an undirected network where each agent is modelled by single integrator dynamics. Both uniform and logarithmic quantizers are considered, which, together with two different controllers, yield four cases of study in this topic. The quantized information is used to update the control input as well as to determine the next trigger event. We show that approximate consensus can be achieved by the proposed algorithms and Zeno behaviour can be completely excluded if constant offsets with some computable lower bounds are added to the trigger conditions. The second topic considers event-triggered edge agreement problems. Two cases, namely the synchronized clock case and the unsynchronized clock case, are studied. In the synchronized clock case, all agents are activated simultaneously to measure the relative state information over edge links under a global clock. Edge events are defined and their occurrences trigger the update of control inputs for the two agents sharing the link. We show that average consensus can be achieved with our proposed algorithm. In the unsynchronized clock case, each agent executes control algorithms under its own clock which is not synchronized with other agents' clocks. An edge event only triggers control input update for an individual agent. It is shown that all agents will reach consensus in a totally asynchronous manner. In the third topic, we propose three different distributed event-triggered control algorithms to achieve leader-follower consensus for a network of Euler-Lagrange agents. We firstly propose two model-independent algorithms for a subclass of Euler-Lagrange agents without the vector of gravitational potential forces. A variable-gain algorithm is employed when the sensing graph is undirected; algorithm parameters are selected in a fully distributed manner with much greater flexibility compared to all previous work concerning event-triggered consensus problems. When the sensing graph is directed, a constant-gain algorithm is employed. The control gains must be centrally designed to exceed several lower bounding inequalities which require limited knowledge of bounds on the matrices describing the agent dynamics, bounds on network topology information and bounds on the initial conditions. When the Euler-Lagrange agents have dynamics which include the vector of gravitational potential forces, an adaptive algorithm is proposed. This requires more information about the agent dynamics but allows for the estimation of uncertain agent parameters. The last topic discusses cooperative stabilization control of rigid formations via an event-triggered approach. We first design a centralized event-triggered formation control system, in which a central event controller determines the next triggering time and broadcasts the event signal to all the agents for control input update. We then build on this approach to propose a distributed event control strategy, in which each agent can use its local event trigger and local information to update the control input at its own event time. For both cases, the trigger condition, event function and trigger behaviour are discussed in detail, and the exponential convergence of the formation system is guaranteed

    Distributed scaling control of rigid formations

    Get PDF
    Recently it has been reported that biased range-measurements among neighboring agents in the gradient distance-based formation control can lead to predictable collective motion. In this paper we take advantage of this effect and by introducing distributed parameters to the prescribed inter-distances we are able to manipulate the steady-state motion of the formation. This manipulation is in the form of inducing simultaneously the combination of constant translational and angular velocities and a controlled scaling of the rigid formation. While the computation of the distributed parameters for the translational and angular velocities is based on the well-known graph rigidity theory, the parameters responsible for the scaling are based on some recent findings in bearing rigidity theory. We carry out the stability analysis of the modified gradient system and simulations in order to validate the main result.Comment: 6 pages In proceedings 55th Conference on Decision and Control, year 201

    ETC-based control of underactuated AUVs and AUV formations in a 2D plane

    Get PDF
    This master thesis is aimed at single auv (autonomous underwater vehicle) and auv formation control in two-dimensional horizontal plane. For sake of increasing services life and saving communication resources, event-triggered mechanism is taken into consideration. two coordinate systems are introduced: earth-fixed frame and body-fixed frame. Some motion parameters and force analysis are used in the process of establishing mathematical model. then the related theorems, lemmas and control method commonly used in analyzing control systems are introduced. then, the auv control system is divided into two subsystems with cascade relationship. considering each subsystem separately, a controller is designed that can simultaneously carry out trajectory tracking and point stabilization. considering the service life of actuator equipment, an event-triggered controller was designed, which can reduce the frequency of actuator adjustment, prolong the service life of equipment. finally, combining the idea of light-of-sight method and virtual structure method, the auv formation tracking control problem is solved similarly to single auv. in deep sea conditions, an event- triggered communicating mechanism is designed to reduce the frequency of communication and adapt to limited communication resources, which balances the reliability and economy. matlab simulink is used to simulate the controller designed in the thesis, and confirms the feasibility of the controller

    Adaptive Control of Systems with Quantization and Time Delays

    Get PDF
    This thesis addresses problems relating to tracking control of nonlinear systems in the presence of quantization and time delays. Motivated by the importance in areas such as networked control systems (NCSs) and digital systems, where the use of a communication network in NCS introduces several constraints to the control system, such as the occurrence of quantization and time delays. Quantization and time delays are of both practical and theoretical importance, and the study of systems where these issues arises is thus of great importance. If the system also has parameters that vary or are uncertain, this will make the control problem more complicated. Adaptive control is one tool to handle such system uncertainty. In this thesis, adaptive backstepping control schemes are proposed to handle uncertainties in the system, and to reduce the effects of quantization. Different control problems are considered where quantization is introduced in the control loop, either at the input, the state or both the input and the state. The quantization introduces difficulties in the controller design and stability analysis due to the limited information and nonlinear characteristics, such as discontinuous phenomena. In the thesis, it is analytically shown how the choice of quantization level affects the tracking performance, and how the stability of the closed-loop system equilibrium can be achieved by choosing proper design parameters. In addition, a predictor feedback control scheme is proposed to compensate for a time delay in the system, where the inputs are quantized at the same time. Experiments on a 2-degrees of freedom (DOF) helicopter system demonstrate the different developed control schemes.publishedVersio

    Control Theory: A Mathematical Perspective on Cyber-Physical Systems

    Get PDF
    Control theory is an interdisciplinary field that is located at the crossroads of pure and applied mathematics with systems engineering and the sciences. Recently the control field is facing new challenges motivated by application domains that involve networks of systems. Examples are interacting robots, networks of autonomous cars or the smart grid. In order to address the new challenges posed by these application disciplines, the special focus of this workshop has been on the currently very active field of Cyber-Physical Systems, which forms the underlying basis for many network control applications. A series of lectures in this workshop was devoted to give an overview on current theoretical developments in Cyber-Physical Systems, emphasizing in particular the mathematical aspects of the field. Special focus was on the dynamics and control of networks of systems, distributed optimization and formation control, fundamentals of nonlinear interconnected systems, as well as open problems in control

    Taming mismatches in inter-agent distances for the formation-motion control of second-order agents

    Get PDF
    This paper presents the analysis on the influence of distance mismatches on the standard gradient-based rigid formation control for second-order agents. It is shown that, similar to the first-order case as recently discussed in the literature, these mismatches introduce two undesired group behaviors: a distorted final shape and a steady-state motion of the group formation. We show that such undesired behaviors can be eliminated by combining the standard formation control law with distributed estimators. Finally, we show how the mismatches can be effectively employed as design parameters in order to control a combined translational and rotational motion of the formation.Comment: 14 pages, conditionally accepted in Automatic Control, IEEE Transactions o
    • …
    corecore