1,143 research outputs found

    Theory of Decoherence-Free Fault-Tolerant Universal Quantum Computation

    Get PDF
    Universal quantum computation on decoherence-free subspaces and subsystems (DFSs) is examined with particular emphasis on using only physically relevant interactions. A necessary and sufficient condition for the existence of decoherence-free (noiseless) subsystems in the Markovian regime is derived here for the first time. A stabilizer formalism for DFSs is then developed which allows for the explicit understanding of these in their dual role as quantum error correcting codes. Conditions for the existence of Hamiltonians whose induced evolution always preserves a DFS are derived within this stabilizer formalism. Two possible collective decoherence mechanisms arising from permutation symmetries of the system-bath coupling are examined within this framework. It is shown that in both cases universal quantum computation which always preserves the DFS (*natural fault-tolerant computation*) can be performed using only two-body interactions. This is in marked contrast to standard error correcting codes, where all known constructions using one or two-body interactions must leave the codespace during the on-time of the fault-tolerant gates. A further consequence of our universality construction is that a single exchange Hamiltonian can be used to perform universal quantum computation on an encoded space whose asymptotic coding efficiency is unity. The exchange Hamiltonian, which is naturally present in many quantum systems, is thus *asymptotically universal*.Comment: 40 pages (body: 30, appendices: 3, figures: 5, references: 2). Fixed problem with non-printing figures. New references added, minor typos correcte

    Numerical and analytical bounds on threshold error rates for hypergraph-product codes

    Get PDF
    We study analytically and numerically decoding properties of finite rate hypergraph-product quantum LDPC codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several non-trival lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models, and a minimum weight decoding threshold of approximately 7%.Comment: 14 pages, 5 figure

    Quantum memories based on engineered dissipation

    Full text link
    Storing quantum information for long times without disruptions is a major requirement for most quantum information technologies. A very appealing approach is to use self-correcting Hamiltonians, i.e. tailoring local interactions among the qubits such that when the system is weakly coupled to a cold bath the thermalization process takes a long time. Here we propose an alternative but more powerful approach in which the coupling to a bath is engineered, so that dissipation protects the encoded qubit against more general kinds of errors. We show that the method can be implemented locally in four dimensional lattice geometries by means of a toric code, and propose a simple 2D set-up for proof of principle experiments.Comment: 6 +8 pages, 4 figures, Includes minor corrections updated references and aknowledgement

    Local Decoders for the 2D and 4D Toric Code

    Full text link
    We analyze the performance of decoders for the 2D and 4D toric code which are local by construction. The 2D decoder is a cellular automaton decoder formulated by Harrington which explicitly has a finite speed of communication and computation. For a model of independent XX and ZZ errors and faulty syndrome measurements with identical probability we report a threshold of 0.133%0.133\% for this Harrington decoder. We implement a decoder for the 4D toric code which is based on a decoder by Hastings arXiv:1312.2546 . Incorporating a method for handling faulty syndromes we estimate a threshold of 1.59%1.59\% for the same noise model as in the 2D case. We compare the performance of this decoder with a decoder based on a 4D version of Toom's cellular automaton rule as well as the decoding method suggested by Dennis et al. arXiv:quant-ph/0110143 .Comment: 22 pages, 21 figures; fixed typos, updated Figures 6,7,8,

    Comparison of memory thresholds for planar qudit geometries

    Get PDF
    We introduce and analyze a new type of decoding algorithm called general color clustering, based on renormalization group methods, to be used in qudit color codes. The performance of this decoder is analyzed under a generalized bit-flip error model, and is used to obtain the first memory threshold estimates for qudit 6-6-6 color codes. The proposed decoder is compared with similar decoding schemes for qudit surface codes as well as the current leading qubit decoders for both sets of codes. We find that, as with surface codes, clustering performs sub-optimally for qubit color codes, giving a threshold of 5.6% compared to the 8.0% obtained through surface projection decoding methods. However, the threshold rate increases by up to 112% for large qudit dimensions, plateauing around 11.9%. All the analysis is performed using QTop, a new open-source software for simulating and visualizing topological quantum error correcting codes

    Numerical and analytical bounds on threshold error rates for hypergraph-product codes

    Get PDF
    We study analytically and numerically decoding properties of finite-rate hypergraph-product quantum low density parity-check codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several nontrivial lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models and a minimum-weight decoding threshold of approximately 7%
    • …
    corecore