4 research outputs found

    A Toolkit for uncertainty reasoning and representation using fuzzy set theory in PROLOG expert systems

    Get PDF
    This thesis examines the issue of uncertainty reasoning and representation in expert systems. Uncertainty and expert systems are defined. The value of uncertainty in expert systems as an approximation of human reasoning is stressed. Five alternative methods of dealing with uncertainty are explored. These include Bayesian probabilities, Mycin confirmation theory, fuzzy set theory, Dempster-Shafer\u27s theory of evidence and a theory of endorsements. A toolkit to apply uncertainty processing in PROLOG expert systems is developed using fuzzy set theory as the basis for uncertainty reasoning and representation. The concepts of fuzzy logic and approximate reasoning are utilized in the implementation. The toolkit is written in C-PROLOG for the PYRAMID UNIX system at the Rochester Institute of Technology

    Uncertainty Assessment in High-Risk Environments Using Probability, Evidence Theory and Expert Judgment Elicitation

    Get PDF
    The level of uncertainty in advanced system design is assessed by comparing the results of expert judgment elicitation to probability and evidence theory. This research shows how one type of monotone measure, namely Dempster-Shafer Theory of Evidence can expand the framework of uncertainty to provide decision makers a more robust solution space. The issues imbedded in this research are focused on how the relevant predictive uncertainty produced by similar action is measured. This methodology uses the established approach from traditional probability theory and Dempster-Shafer evidence theory to combine two classes of uncertainty, aleatory and epistemic. Probability theory provides the mathematical structure traditionally used in the representation of aleatory uncertainty. The uncertainty in analysis outcomes is represented by probability distributions and typically summarized as Complimentary Cumulative Distribution Functions (CCDFs). The main components of this research are probability of X in the probability theory compared to mx in evidence theory. Using this comparison, an epistemic model is developed to obtain the upper “CCPF - Complimentary Cumulative Plausibility Function” limits and the lower “CCBF - Complimentary Cumulative Belief Function” limits compared to the traditional probability function. A conceptual design for the Thermal Protection System (TPS) of future Crew Exploration Vehicles (CEV) is used as an initial test case. A questionnaire is tailored to elicit judgment from experts in high-risk environments. Based on description and characteristics, the answers of the questionnaire produces information, that serves as qualitative semantics used for the evidence theory functions. The computational mechanism provides a heuristic approach for the compilation and presentation of the results. A follow-up evaluation serves as validation of the findings and provides useful information in terms of consistency and adoptability to other domains. The results of this methodology provide a useful and practical approach in conceptual design to aid the decision maker in assessing the level of uncertainty of the experts. The methodology presented is well-suited for decision makers that encompass similar conceptual design instruments

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well
    corecore