1,465 research outputs found

    Quasi-arithmetic means and OWA functions in interval-valued and Atanassov's intuitionistic fuzzy set theory

    Get PDF
    In this paper we propose an extension of the well-known OWA functions introduced by Yager to interval-valued (IVFS) and Atanassov’s intuitionistic (AIFS) fuzzy set theory. We first extend the arithmetic and the quasi-arithmetic mean using the arithmetic operators in IVFS and AIFS theory and investigate under which conditions these means are idempotent. Since on the unit interval the construction of the OWA function involves reordering the input values, we propose a way of transforming the input values in IVFS and AIFS theory to a new list of input values which are now ordered

    Implication functions in interval-valued fuzzy set theory

    Get PDF
    Interval-valued fuzzy set theory is an extension of fuzzy set theory in which the real, but unknown, membership degree is approximated by a closed interval of possible membership degrees. Since implications on the unit interval play an important role in fuzzy set theory, several authors have extended this notion to interval-valued fuzzy set theory. This chapter gives an overview of the results pertaining to implications in interval-valued fuzzy set theory. In particular, we describe several possibilities to represent such implications using implications on the unit interval, we give a characterization of the implications in interval-valued fuzzy set theory which satisfy the Smets-Magrez axioms, we discuss the solutions of a particular distributivity equation involving strict t-norms, we extend monoidal logic to the interval-valued fuzzy case and we give a soundness and completeness theorem which is similar to the one existing for monoidal logic, and finally we discuss some other constructions of implications in interval-valued fuzzy set theory

    On extending generalized Bonferroni means to Atanassov orthopairs in decision making contexts

    Full text link
    Extensions of aggregation functions to Atanassov orthopairs (often referred to as intuitionistic fuzzy sets or AIFS) usually involve replacing the standard arithmetic operations with those defined for the membership and non-membership orthopairs. One problem with such constructions is that the usual choice of operations has led to formulas which do not generalize the aggregation of ordinary fuzzy sets (where the membership and non-membership values add to 1). Previous extensions of the weighted arithmetic mean and ordered weighted averaging operator also have the absorbent element 〈1,0〉, which becomes particularly problematic in the case of the Bonferroni mean, whose generalizations are useful for modeling mandatory requirements. As well as considering the consistency and interpretability of the operations used for their construction, we hold that it is also important for aggregation functions over higher order fuzzy sets to exhibit analogous behavior to their standard definitions. After highlighting the main drawbacks of existing Bonferroni means defined for Atanassov orthopairs and interval data, we present two alternative methods for extending the generalized Bonferroni mean. Both lead to functions with properties more consistent with the original Bonferroni mean, and which coincide in the case of ordinary fuzzy values.<br /

    Fifty years of similarity relations: a survey of foundations and applications

    Get PDF
    On the occasion of the 50th anniversary of the publication of Zadeh's significant paper Similarity Relations and Fuzzy Orderings, an account of the development of similarity relations during this time will be given. Moreover, the main topics related to these fuzzy relations will be reviewed.Peer ReviewedPostprint (author's final draft

    The posterity of Zadeh's 50-year-old paper: A retrospective in 101 Easy Pieces – and a Few More

    Get PDF
    International audienceThis article was commissioned by the 22nd IEEE International Conference of Fuzzy Systems (FUZZ-IEEE) to celebrate the 50th Anniversary of Lotfi Zadeh's seminal 1965 paper on fuzzy sets. In addition to Lotfi's original paper, this note itemizes 100 citations of books and papers deemed “important (significant, seminal, etc.)” by 20 of the 21 living IEEE CIS Fuzzy Systems pioneers. Each of the 20 contributors supplied 5 citations, and Lotfi's paper makes the overall list a tidy 101, as in “Fuzzy Sets 101”. This note is not a survey in any real sense of the word, but the contributors did offer short remarks to indicate the reason for inclusion (e.g., historical, topical, seminal, etc.) of each citation. Citation statistics are easy to find and notoriously erroneous, so we refrain from reporting them - almost. The exception is that according to Google scholar on April 9, 2015, Lotfi's 1965 paper has been cited 55,479 times
    • 

    corecore