2,527 research outputs found

    Quantum mutual information and quantumness vectors for multi-qubit systems

    Full text link
    We introduce a new information theoretic measure of quantum correlations for multiparticle systems. We use a form of multivariate mutual information -- the interaction information and generalize it to multiparticle quantum systems. There are a number of different possible generalizations. We consider two of them. One of them is related to the notion of quantum discord and the other to the concept of quantum dissension. This new measure, called dissension vector, is a set of numbers -- quantumness vector. This can be thought of as a fine-grained measure, as opposed to measures that quantify some average quantum properties of a system. These quantities quantify/characterize the correlations present in multiparticle states. We consider some multiqubit states and find that these quantities are responsive to different aspects of quantumness, and correlations present in a state. We find that different dissension vectors can track the correlations (both classical and quantum), or quantumness only. As physical applications, we find that these vectors might be useful in several information processing tasks. We consider the role of dissension vectors -- (a) in deciding the security of BB84 protocol against an eavesdropper and (b) in determining the possible role of correlations in the performance of Grover search algorithm. Especially, in the Grover search algorithm, we find that dissension vectors can detect the correlations and show the maximum correlations when one expects.Comment: 18 pages 8 figures. Updated. Comments are welcom

    Quantumness of correlations and entanglement

    Full text link
    Generalized measurement schemes on one part of bipartite states, which would leave the set of all separable states insensitive are explored here to understand quantumness of correlations in a more general perspecitve. This is done by employing linear maps associated with generalized projective measurements. A generalized measurement corresponds to a quantum operation mapping a density matrix to another density matrix, preserving its positivity, hermiticity and traceclass. The Positive Operator Valued Measure (POVM) -- employed earlier in the literature to optimize the measures of classical/quatnum correlations -- correspond to completely positive (CP) maps. The other class, the not completely positive (NCP) maps, are investigated here, in the context of measurements, for the first time. It is shown that that such NCP projective maps provide a new clue to the understanding the quantumness of correlations in a general setting. Especially, the separability-classicality dichotomy gets resolved only when both the classes of projective maps (CP and NCP) are incorporated as optimizing measurements. An explicit example of a separable state -- exhibiting non-zero quantumn discord when possible optimizing measurements are restricted to POVMs -- is re-examined with this extended scheme incorporating NCP projective maps to elucidate the power of this approach.Comment: 14 pages, no figures, revision version, Accepted for publication in the Special Issue of the International Journal of Quantum Information devoted to "Quantum Correlations: entanglement and beyond

    Multipartite quantum and classical correlations in symmetric n-qubit mixed states

    Get PDF
    We discuss how to calculate genuine multipartite quantum and classical correlations in symmetric, spatially invariant, mixed nn-qubit density matrices. We show that the existence of symmetries greatly reduces the amount of free parameters to be optimized in order to find the optimal measurement that minimizes the conditional entropy in the discord calculation. We apply this approach to the states exhibited dynamically during a thermodynamic protocol to extract maximum work. We also apply the symmetry criterion to a wide class of physically relevant cases of spatially homogeneous noise over multipartite entangled states. Exploiting symmetries we are able to calculate the nonlocal and genuine quantum features of these states and note some interesting properties.Comment: Close to published Versio

    Frustration, Entanglement, and Correlations in Quantum Many Body Systems

    Full text link
    We derive an exact lower bound to a universal measure of frustration in degenerate ground states of quantum many-body systems. The bound results in the sum of two contributions: entanglement and classical correlations arising from local measurements. We show that average frustration properties are completely determined by the behavior of the maximally mixed ground state. We identify sufficient conditions for a quantum spin system to saturate the bound, and for models with twofold degeneracy we prove that average and local frustration coincide.Comment: 9 pages, 1 figur

    All Multiparty Quantum States Can Be Made Monogamous

    Full text link
    Monogamy of quantum correlation measures puts restrictions on the sharability of quantum correlations in multiparty quantum states. Multiparty quantum states can satisfy or violate monogamy relations with respect to given quantum correlations. We show that all multiparty quantum states can be made monogamous with respect to all measures. More precisely, given any quantum correlation measure that is non-monogamic for a multiparty quantum state, it is always possible to find a monotonically increasing function of the measure that is monogamous for the same state. The statement holds for all quantum states, whether pure or mixed, in all finite dimensions and for an arbitrary number of parties. The monotonically increasing function of the quantum correlation measure satisfies all the properties that is expected for quantum correlations to follow. We illustrate the concepts by considering a thermodynamic measure of quantum correlation, called the quantum work deficit.Comment: 6.5 pages, 2 figures, RevTeX 4-1, Title in the published version is "Monotonically increasing functions of any quantum correlation can make all multiparty states monogamous

    Multipartite non-locality in a thermalized Ising spin-chain

    Get PDF
    We study multipartite correlations and non-locality in an isotropic Ising ring under transverse magnetic field at both zero and finite temperature. We highlight parity-induced differences between the multipartite Bell-like functions used in order to quantify the degree of non-locality within a ring state and reveal a mechanism for the passive protection of multipartite quantum correlations against thermal spoiling effects that is clearly related to the macroscopic properties of the ring model.Comment: 8 pages, 6 figures, RevTeX4, Published versio

    The quantumness of correlations revealed in local measurements exceeds entanglement

    Full text link
    We analyze a family of measures of general quantum correlations for composite systems, defined in terms of the bipartite entanglement necessarily created between systems and apparatuses during local measurements. For every entanglement monotone EE, this operational correspondence provides a different measure QEQ_E of quantum correlations. Examples of such measures are the relative entropy of quantumness, the quantum deficit, and the negativity of quantumness. In general, we prove that any so defined quantum correlation measure is always greater than (or equal to) the corresponding entanglement between the subsystems, QE≥EQ_E \ge E, for arbitrary states of composite quantum systems. We analyze qualitatively and quantitatively the flow of correlations in iterated measurements, showing that general quantum correlations and entanglement can never decrease along von Neumann chains, and that genuine multipartite entanglement in the initial state of the observed system always gives rise to genuine multipartite entanglement among all subsystems and all measurement apparatuses at any level in the chain. Our results provide a comprehensive framework to understand and quantify general quantum correlations in multipartite states.Comment: 6 pages, 2 figures; terminology slightly revised, few remarks adde

    Generalizations of entanglement based on coherent states and convex sets

    Full text link
    Unentangled pure states on a bipartite system are exactly the coherent states with respect to the group of local transformations. What aspects of the study of entanglement are applicable to generalized coherent states? Conversely, what can be learned about entanglement from the well-studied theory of coherent states? With these questions in mind, we characterize unentangled pure states as extremal states when considered as linear functionals on the local Lie algebra. As a result, a relativized notion of purity emerges, showing that there is a close relationship between purity, coherence and (non-)entanglement. To a large extent, these concepts can be defined and studied in the even more general setting of convex cones of states. Based on the idea that entanglement is relative, we suggest considering these notions in the context of partially ordered families of Lie algebras or convex cones, such as those that arise naturally for multipartite systems. The study of entanglement includes notions of local operations and, for information-theoretic purposes, entanglement measures and ways of scaling systems to enable asymptotic developments. We propose ways in which these may be generalized to the Lie-algebraic setting, and to a lesser extent to the convex-cones setting. One of our original motivations for this program is to understand the role of entanglement-like concepts in condensed matter. We discuss how our work provides tools for analyzing the correlations involved in quantum phase transitions and other aspects of condensed-matter systems.Comment: 37 page
    • …
    corecore