44,047 research outputs found

    Variable Selection and Model Averaging in Semiparametric Overdispersed Generalized Linear Models

    Full text link
    We express the mean and variance terms in a double exponential regression model as additive functions of the predictors and use Bayesian variable selection to determine which predictors enter the model, and whether they enter linearly or flexibly. When the variance term is null we obtain a generalized additive model, which becomes a generalized linear model if the predictors enter the mean linearly. The model is estimated using Markov chain Monte Carlo simulation and the methodology is illustrated using real and simulated data sets.Comment: 8 graphs 35 page

    Flexible Modelling of Discrete Failure Time Including Time-Varying Smooth Effects

    Get PDF
    Discrete survival models have been extended in several ways. More flexible models are obtained by including time-varying coefficients and covariates which determine the hazard rate in an additive but not further specified form. In this paper a general model is considered which comprises both types of covariate effects. An additional extension is the incorporation of smooth interaction between time and covariates. Thus in the linear predictor smooth effects of covariates which may vary across time are allowed. It is shown how simple duration models produce artefacts which may be avoided by flexible models. For the general model which includes parametric terms, time-varying coefficients in parametric terms and time-varying smooth effects estimation procedures are derived which are based on the regularized expansion of smooth effects in basis functions

    Some Problems in Model Specification and Inference for Generalized Additive Models

    Get PDF
    Regression models describingthe dependence between a univariate response and a set of covariates play a fundamental role in statistics. In the last two decades, a tremendous effort has been made in developing flexible regression techniques such as generalized additive models(GAMs) with the aim of modelling the expected value of a response variable as a sum of smooth unspecified functions of predictors. Many nonparametric regression methodologies exist includinglocal-weighted regressionand smoothing splines. Here the focus is on penalized regression spline methods which can be viewed as a generalization of smoothing splines with a more flexible choice of bases and penalties. This thesis addresses three issues. First, the problem of model misspecification is treated by extending the instrumental variable approach to the GAM context. Second, we study the theoretical and empirical properties of the confidence intervals for the smooth component functions of a GAM. Third, we consider the problem of variable selection within this flexible class of models. All results are supported by theoretical arguments and extensive simulation experiments which shed light on the practical performance of the methods discussed in this thesis.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Generalized Additive Models with Unknown Link Function Including Variable Selection

    Get PDF
    The generalized additive model is a well established and strong tool that allows to model smooth effects of predictors on the response. However, if the link function, which is typically chosen as the canonical link, is misspecified, substantial bias is to be expected. A procedure is proposed that simultaneously estimates the form of the link function and the unknown form of the predictor functions including selection of predictors. The procedure is based on boosting methodology, which obtains estimates by using a sequence of weak learners. It strongly dominates fitting procedures that are unable to modify a given link function if the true link function deviates from the fixed function. The performance of the procedure is shown in simulation studies and illustrated by a real world example

    Generalized structured additive regression based on Bayesian P-splines

    Get PDF
    Generalized additive models (GAM) for modelling nonlinear effects of continuous covariates are now well established tools for the applied statistician. In this paper we develop Bayesian GAM's and extensions to generalized structured additive regression based on one or two dimensional P-splines as the main building block. The approach extends previous work by Lang und Brezger (2003) for Gaussian responses. Inference relies on Markov chain Monte Carlo (MCMC) simulation techniques, and is either based on iteratively weighted least squares (IWLS) proposals or on latent utility representations of (multi)categorical regression models. Our approach covers the most common univariate response distributions, e.g. the Binomial, Poisson or Gamma distribution, as well as multicategorical responses. For the first time, we present Bayesian semiparametric inference for the widely used multinomial logit models. As we will demonstrate through two applications on the forest health status of trees and a space-time analysis of health insurance data, the approach allows realistic modelling of complex problems. We consider the enormous flexibility and extendability of our approach as a main advantage of Bayesian inference based on MCMC techniques compared to more traditional approaches. Software for the methodology presented in the paper is provided within the public domain package BayesX

    Markov-switching generalized additive models

    Full text link
    We consider Markov-switching regression models, i.e. models for time series regression analyses where the functional relationship between covariates and response is subject to regime switching controlled by an unobservable Markov chain. Building on the powerful hidden Markov model machinery and the methods for penalized B-splines routinely used in regression analyses, we develop a framework for nonparametrically estimating the functional form of the effect of the covariates in such a regression model, assuming an additive structure of the predictor. The resulting class of Markov-switching generalized additive models is immensely flexible, and contains as special cases the common parametric Markov-switching regression models and also generalized additive and generalized linear models. The feasibility of the suggested maximum penalized likelihood approach is demonstrated by simulation and further illustrated by modelling how energy price in Spain depends on the Euro/Dollar exchange rate

    Structured additive regression for multicategorical space-time data: A mixed model approach

    Get PDF
    In many practical situations, simple regression models suffer from the fact that the dependence of responses on covariates can not be sufficiently described by a purely parametric predictor. For example effects of continuous covariates may be nonlinear or complex interactions between covariates may be present. A specific problem of space-time data is that observations are in general spatially and/or temporally correlated. Moreover, unobserved heterogeneity between individuals or units may be present. While, in recent years, there has been a lot of work in this area dealing with univariate response models, only limited attention has been given to models for multicategorical space-time data. We propose a general class of structured additive regression models (STAR) for multicategorical responses, allowing for a flexible semiparametric predictor. This class includes models for multinomial responses with unordered categories as well as models for ordinal responses. Non-linear effects of continuous covariates, time trends and interactions between continuous covariates are modelled through Bayesian versions of penalized splines and flexible seasonal components. Spatial effects can be estimated based on Markov random fields, stationary Gaussian random fields or two-dimensional penalized splines. We present our approach from a Bayesian perspective, allowing to treat all functions and effects within a unified general framework by assigning appropriate priors with different forms and degrees of smoothness. Inference is performed on the basis of a multicategorical linear mixed model representation. This can be viewed as posterior mode estimation and is closely related to penalized likelihood estimation in a frequentist setting. Variance components, corresponding to inverse smoothing parameters, are then estimated by using restricted maximum likelihood. Numerically efficient algorithms allow computations even for fairly large data sets. As a typical example we present results on an analysis of data from a forest health survey

    Boosted Beta regression.

    Get PDF
    Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1). Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures
    corecore