27 research outputs found

    Efficient Algorithms for Immersive Audio Rendering Enhancement

    Get PDF
    Il rendering audio immersivo è il processo di creazione di un’esperienza sonora coinvolgente e realistica nello spazio 3D. Nei sistemi audio immersivi, le funzioni di trasferimento relative alla testa (head-related transfer functions, HRTFs) vengono utilizzate per la sintesi binaurale in cuffia poiché esprimono il modo in cui gli esseri umani localizzano una sorgente sonora. Possono essere introdotti algoritmi di interpolazione delle HRTF per ridurre il numero di punti di misura e per creare un movimento del suono affidabile. La riproduzione binaurale può essere eseguita anche dagli altoparlanti. Tuttavia, il coinvolgimento di due o più gli altoparlanti causa il problema del crosstalk. In questo caso, algoritmi di cancellazione del crosstalk (CTC) sono necessari per eliminare i segnali di interferenza indesiderati. In questa tesi, partendo da un'analisi comparativa di metodi di misura delle HRTF, viene proposto un sistema di rendering binaurale basato sull'interpolazione delle HRTF per applicazioni in tempo reale. Il metodo proposto mostra buone prestazioni rispetto a una tecnica di riferimento. L'algoritmo di interpolazione è anche applicato al rendering audio immersivo tramite altoparlanti, aggiungendo un algoritmo di cancellazione del crosstalk fisso, che considera l'ascoltatore in una posizione fissa. Inoltre, un sistema di cancellazione crosstalk adattivo, che include il tracciamento della testa dell'ascoltatore, è analizzato e implementato in tempo reale. Il CTC adattivo implementa una struttura in sottobande e risultati sperimentali dimostrano che un maggiore numero di bande migliora le prestazioni in termini di errore totale e tasso di convergenza. Il sistema di riproduzione e le caratteristiche dell'ambiente di ascolto possono influenzare le prestazioni a causa della loro risposta in frequenza non ideale. L'equalizzazione viene utilizzata per livellare le varie parti dello spettro di frequenze che compongono un segnale audio al fine di ottenere le caratteristiche sonore desiderate. L'equalizzazione può essere manuale, come nel caso dell'equalizzazione grafica, dove il guadagno di ogni banda di frequenza può essere modificato dall'utente, o automatica, la curva di equalizzazione è calcolata automaticamente dopo la misurazione della risposta impulsiva della stanza. L'equalizzazione della risposta ambientale può essere applicata anche ai sistemi multicanale, che utilizzano due o più altoparlanti e la zona di equalizzazione può essere ampliata misurando le risposte impulsive in diversi punti della zona di ascolto. In questa tesi, GEQ efficienti e un sistema adattativo di equalizzazione d'ambiente. In particolare, sono proposti e approfonditi tre equalizzatori grafici a basso costo computazionale e a fase lineare e quasi lineare. Gli esperimenti confermano l'efficacia degli equalizzatori proposti in termini di accuratezza, complessità computazionale e latenza. Successivamente, una struttura adattativa in sottobande è introdotta per lo sviluppo di un sistema di equalizzazione d'ambiente multicanale. I risultati sperimentali verificano l'efficienza dell'approccio in sottobande rispetto al caso a banda singola. Infine, viene presentata una rete crossover a fase lineare per sistemi multicanale, mostrando ottimi risultati in termini di risposta in ampiezza, bande di transizione, risposta polare e risposta in fase. I sistemi di controllo attivo del rumore (ANC) possono essere progettati per ridurre gli effetti dell'inquinamento acustico e possono essere utilizzati contemporaneamente a un sistema audio immersivo. L'ANC funziona creando un'onda sonora in opposizione di fase rispetto all'onda sonora in arrivo. Il livello sonoro complessivo viene così ridotto grazie all'interferenza distruttiva. Infine, questa tesi presenta un sistema ANC utilizzato per la riduzione del rumore. L’approccio proposto implementa una stima online del percorso secondario e si basa su filtri adattativi in sottobande applicati alla stima del percorso primario che mirano a migliorare le prestazioni dell’intero sistema. La struttura proposta garantisce un tasso di convergenza migliore rispetto all'algoritmo di riferimento.Immersive audio rendering is the process of creating an engaging and realistic sound experience in 3D space. In immersive audio systems, the head-related transfer functions (HRTFs) are used for binaural synthesis over headphones since they express how humans localize a sound source. HRTF interpolation algorithms can be introduced for reducing the number of measurement points and creating a reliable sound movement. Binaural reproduction can be also performed by loudspeakers. However, the involvement of two or more loudspeakers causes the problem of crosstalk. In this case, crosstalk cancellation (CTC) algorithms are needed to delete unwanted interference signals. In this thesis, starting from a comparative analysis of HRTF measurement techniques, a binaural rendering system based on HRTF interpolation is proposed and evaluated for real-time applications. The proposed method shows good performance in comparison with a reference technique. The interpolation algorithm is also applied for immersive audio rendering over loudspeakers, by adding a fixed crosstalk cancellation algorithm, which assumes that the listener is in a fixed position. In addition, an adaptive crosstalk cancellation system, which includes the tracking of the listener's head, is analyzed and a real-time implementation is presented. The adaptive CTC implements a subband structure and experimental results prove that a higher number of bands improves the performance in terms of total error and convergence rate. The reproduction system and the characteristics of the listening room may affect the performance due to their non-ideal frequency response. Audio equalization is used to adjust the balance of different audio frequencies in order to achieve desired sound characteristics. The equalization can be manual, such as in the case of graphic equalization, where the gain of each frequency band can be modified by the user, or automatic, where the equalization curve is automatically calculated after the room impulse response measurement. The room response equalization can be also applied to multichannel systems, which employ two or more loudspeakers, and the equalization zone can be enlarged by measuring the impulse responses in different points of the listening zone. In this thesis, efficient graphic equalizers (GEQs), and an adaptive room response equalization system are presented. In particular, three low-complexity linear- and quasi-linear-phase graphic equalizers are proposed and deeply examined. Experiments confirm the effectiveness of the proposed GEQs in terms of accuracy, computational complexity, and latency. Successively, a subband adaptive structure is introduced for the development of a multichannel and multiple positions room response equalizer. Experimental results verify the effectiveness of the subband approach in comparison with the single-band case. Finally, a linear-phase crossover network is presented for multichannel systems, showing great results in terms of magnitude flatness, cutoff rates, polar diagram, and phase response. Active noise control (ANC) systems can be designed to reduce the effects of noise pollution and can be used simultaneously with an immersive audio system. The ANC works by creating a sound wave that has an opposite phase with respect to the sound wave of the unwanted noise. The additional sound wave creates destructive interference, which reduces the overall sound level. Finally, this thesis presents an ANC system used for noise reduction. The proposed approach implements an online secondary path estimation and is based on cross-update adaptive filters applied to the primary path estimation that aim at improving the performance of the whole system. The proposed structure allows for a better convergence rate in comparison with a reference algorithm

    Reasoning Studies. From Single Norms to Individual Differences.

    Get PDF
    In review. Submitted for habilitation in psychology

    Large-Scale Photonics Integration: Data Communications to Optical Beamforming

    Get PDF
    Integrated photonics is an emerging technology that has begun to transform our way of life with the same amount of impact that integrated CMOS electronics has. Currently, photonics integration is orders of magnitude less complicated than its electronics counterparts. Nonetheless, it serves as one of the main driving forces to meet the exponentially increasing demand for high-speed and low-cost data transfer in the Information Age. It also promises to provide solutions for next-generation high-sensitivity image sensors and precision metrology and spectroscopy instruments. In this thesis, integrated photonics architectures for solid-state photonic beamforming and processing are investigated for high-resolution and high sensitivity lens-free transceiver applications. Furthermore, high-efficiency integrated electro-optical modulators aiming to meet the demand of high-density photonic integration with improved modulation efficiency, small footprint, and lower insertion loss are investigated. Two integrated photonic solid-state beamforming architectures incorporating two-dimensional apertures are explored. First, a novel transceiver architecture for remote sensing, coherent imaging, and ranging applications is demonstrated. It reduces system implementation complexity and offers a methodology for very-large-scale coherent transceiver beamforming applications. Next, a transmitter beamforming architecture inspired by the diffraction pattern of the slit annular ring is analyzed and demonstrated. This transceiver architecture can be used for coherent beamforming applications such as imaging and point-to-point optical communication. Finally, a coherent imager architecture for high-sensitivity three-dimensional imaging and remote-sensing applications is present. This novel architecture can suppress undesired phase fluctuations of the optical carrier signal in the illumination and reference paths, providing higher resolution and higher acquisition speed than previous implementations. Moreover, several compact, high-speed CMOS compatible modulators that enable high-density photonic integration are explored. Ultra-compact and low insertion loss silicon-organic-hybrid modulators are designed and implemented for high-speed beamforming and high-efficiency complex signal modulation applications. Finally, a novel integrated nested-ring assisted modulator topology is analyzed and implemented for high-density and high modulation efficiency applications.</p

    Commissioning and First Science Results of the Desert Fireball Network: a Global-Scale Automated Survey for Large Meteoroid Impacts

    Get PDF
    This thesis explores the first results from the Desert Fireball Network, a distributed global observatory designed to characterise fireballs caused by meteoroid impacts. To deal with the >50 terabytes of data influx per week, innovative data reduction techniques have been developed. The science topics investigated in this work include airbursts caused by large meteoroids impacting the Earth's atmosphere, the recovery of a meteorite and its orbital history, and the structure of a meteor shower

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    Implantable Asynchronous Epilectic Seizure Detector

    Get PDF
    RÉSUMÉ Plusieurs algorithmes de détection à faible consommation ont été proposés pour le traitement de l'épilepsie focale. La gestion de l'énergie dans ces microsystèmes est une question importante qui dépend principalement de la charge et de la décharge des capacités parasites des transistors et des courants de court-circuit pendant les commutations. Dans ce mémoire, un détecteur asynchrone de crise pour le traitement de l'épilepsie focale est présenté. Ce système fait partie d'un dispositif implantable intégré pour stopper la propagation de la crise. L'objectif de ce travail est de réduire la dissipation de puissance en évitant les transitions inutiles de signaux grâce à la technique du « clock tree » ; en conséquence, les transistors ne changent pas d'état transitoire dans ce mode d'économie d'énergie (période de surveillance des EEG intracrâniens), sauf si un événement anormal est détecté. Le dispositif intégré proposé comporte un bio-amplificateur en amont (front-end) à faible bruit, un processeur de signal numérique et un détecteur. Un délai variable et quatre détecteurs de fenêtres de tensions variables en parallèles sont utilisés pour extraire de l’information sur le déclenchement des crises. La sensibilité du détecteur est améliorée en optimisant les paramètres variables en fonction des activités de foyers épileptiques de chaque patient lors du début des crises. Le détecteur de crises asynchrone proposé a été implémenté premièrement en tant que prototype sur un circuit imprimé circulaire, ensuite nous l’avons intégré sur une seule puce dans la technologie standard CMOS 0.13μm. La puce fabriquée a été validée in vitro en utilisant un total de 34 enregistrements EEG intracrâniens avec la durée moyenne de chaque enregistrement de 1 min. Parmi ces jeux de données, 15 d’entre eux correspondaient à des enregistrements de crises, tandis que les 19 autres provenaient d’enregistrements variables de patients tels que de brèves crises électriques, des mouvements du corps et des variations durant le sommeil. Le système proposé a réalisé une performance de détection précise avec une sensibilité de 100% et 100% de spécificité pour ces 34 signaux icEEG enregistrés. Le délai de détection moyen était de 13,7 s après le début de la crise, bien avant l'apparition des manifestations cliniques, et une consommation d'énergie de 9 µW a été obtenue à partir d'essais expérimentaux.----------ABSTRACT Several power efficient detection algorithms have been proposed for treatment of focal epilepsy. Power management in these microsystems is an important issue which is mainly dependent on charging and discharging of the parasitic capacitances in transistors and short-circuit currents during switching. In this thesis, an asynchronous seizure detector for treatment of the focal epilepsy is presented. This system is part of an implantable integrated device to block the seizure progression. The objective of this work is reducing the power dissipation by avoiding the unnecessary signal transition and clock tree; as a result, transistors do not change their transient state in power saving mode (icEEG monitoring period) unless an abnormal event detected. The proposed integrated device contains a low noise front-end bioamplifier, a digital signal processor and a detector. A variable time frame and four concurrent variable voltage window detectors are used to extract seizure onset information. The sensitivity of the detector is enhanced by optimizing the variable parameters based on specific electrographic seizure onset activities of each patient. The proposed asynchronous seizure detector was first implemented as a prototype on a PCB and then integrated in standard 0.13 μm CMOS process. The fabricated chip was validated offline using a total of 34 intracranial EEG recordings with the average time duration of 1 min. 15 of these datasets corresponded to seizure activities while the remaining 19 signals were related to variable patient activities such as brief electrical seizures, body movement, and sleep patterns. The proposed system achieved an accurate detection performance with 100% sensitivity and 100 % specificity for these 34 recorded icEEG signals. The average detection delay was 13.7 s after seizure onset, well before the onset of the clinical manifestations. Finally, power consumption of the chip is 9 µW obtained from experimental tests

    Implantable Micro-Device for Epilepsy Seizure Detection and Subsequent Treatment

    Get PDF
    RÉSUMÉ L’émergence des micro-dispositifs implantables est une voie prometteuse pour le traitement de troubles neurologiques. Ces systèmes biomédicaux ont été exploités comme traitements non-conventionnels sur des patients chez qui les remèdes habituels sont inefficaces. Les récents progrès qui ont été faits sur les interfaces neuronales directes ont permis aux chercheurs d’analyser l’activité EEG intracérébrale (icEEG) en temps réel pour des fins de traitements. Cette thèse présente un dispositif implantable à base de microsystèmes pouvant capter efficacement des signaux neuronaux, détecter des crises d’épilepsie et y apporter un traitement afin de l’arrêter. Les contributions principales présentées ici ont été rapportées dans cinq articles scientifiques, publiés ou acceptés pour publication dans les revues IEEE, et plusieurs autres tels que «Low Power Electronics» et «Emerging Technologies in Computing». Le microsystème proposé inclus un circuit intégré (CI) à faible consommation énergétique permettant la détection de crises d’épilepsie en temps réel. Cet CI comporte une pré-amplification initiale et un détecteur de crises d’épilepsie. Le pré-amplificateur est constitué d’une nouvelle topologie de stabilisateur d’hacheur réduisant le bruit et la puissance dissipée. Les CI fabriqués ont été testés sur des enregistrements d’icEEG provenant de sept patients épileptiques réfractaires au traitement antiépileptique. Le délai moyen de la détection d’une crise est de 13,5 secondes, soit avant le début des manifestations cliniques évidentes. La consommation totale d’énergie mesurée de cette puce est de 51 μW. Un neurostimulateur à boucle fermée (NSBF), quant à lui, détecte automatiquement les crises en se basant sur les signaux icEEG captés par des électrodes intracrâniennes et permet une rétroaction par une stimulation électrique au même endroit afin d’interrompre ces crises. La puce de détection de crises et le stimulateur électrique à base sur FPGA ont été assemblés à des électrodes afin de compléter la prothèse proposée. Ce NSBF a été validé en utilisant des enregistrements d’icEEG de dix patients souffrant d’épilepsie réfractaire. Les résultats révèlent une performance excellente pour la détection précoce de crises et pour l’auto-déclenchement subséquent d’une stimulation électrique. La consommation énergétique totale du NSBF est de 16 mW. Une autre alternative à la stimulation électrique est l’injection locale de médicaments, un traitement prometteur de l’épilepsie. Un système local de livraison de médicament basé sur un nouveau détecteur asynchrone des crises est présenté.----------ABSTRACT Emerging implantable microdevices hold great promise for the treatment of patients with neurological conditions. These biomedical systems have been exploited as unconventional treatment for the conventionally untreatable patients. Recent progress in brain-machine-interface activities has led the researchers to analyze the intracerebral EEG (icEEG) recording in real-time and deliver subsequent treatments. We present in this thesis a long-term safe and reliable low-power microsystem-based implantable device to perform efficient neural signal recording, seizure detection and subsequent treatment for epilepsy. The main contributions presented in this thesis are reported in five journal manuscripts, published or accepted for publication in IEEE Journals, and many others such as Low Power Electronics, and Emerging Technologies in Computing. The proposed microsystem includes a low-power integrated circuit (IC) intended for real-time epileptic seizure detection. This IC integrates a front-end preamplifier and epileptic seizure detector. The preamplifier is based on a new chopper stabilizer topology that reduces noise and power dissipation. The fabricated IC was tested using icEEG recordings from seven patients with drug-resistant epilepsy. The average seizure detection delay was 13.5 sec, well before the onset of clinical manifestations. The measured total power consumption of this chip is 51 µW. A closed-loop neurostimulator (CLNS) is next introduced, which is dedicated to automatically detect seizure based on icEEG recordings from intracranial electrode contacts and provide an electrical stimulation feedback to the same contacts in order to disrupt these seizures. The seizure detector chip and a dedicated FPGA-based electrical stimulator were assembled together with common recording electrodes to complete the proposed prosthesis. This CLNS was validated offline using recording from ten patients with refractory epilepsy, and showed excellent performance for early detection of seizures and subsequent self-triggering electrical stimulation. Total power consumption of the CLNS is 16 mW. Alternatively, focal drug injection is the promising treatment for epilepsy. A responsive focal drug delivery system based on a new asynchronous seizure detector is also presented. The later system with data-dependent computation reduces up to 49% power consumption compared to the previous synchronous neurostimulator
    corecore