544 research outputs found

    Generalized visual information analysis via tensorial algebra

    Get PDF
    High order data is modeled using matrices whose entries are numerical arrays of a fixed size. These arrays, called t-scalars, form a commutative ring under the convolution product. Matrices with elements in the ring of t-scalars are referred to as t-matrices. The t-matrices can be scaled, added and multiplied in the usual way. There are t-matrix generalizations of positive matrices, orthogonal matrices and Hermitian symmetric matrices. With the t-matrix model, it is possible to generalize many well known matrix algorithms. In particular, the t-matrices are used to generalize the SVD (Singular Value Decomposition), HOSVD (High Order SVD), PCA (Principal Component Analysis), 2DPCA (two Dimensional PCA) and GCA (Grassmannian Component Analysis). The generalized t-matrix algorithms, namely TSVD, THOSVD, TPCA, T2DPCA and TGCA, are applied to low-rank approximation, reconstruction and supervised classification of images. Experiments show that the t-matrix algorithms compare favourably with standard matrix algorithms

    Hyperspectral image spectral-spatial feature extraction via tensor principal component analysis

    Get PDF
    We consider the tensor-based spectral-spatial feature\ud extraction problem for hyperspectral image classification.\ud First, a tensor framework based on circular convolution is proposed.\ud Based on this framework, we extend the traditional PCA to\ud its tensorial version TPCA, which is applied to the spectral-spatial\ud features of hyperspectral image data. The experiments show\ud that the classification accuracy obtained using TPCA features\ud is significantly higher than the accuracies obtained by its rivals

    A group model for stable multi-subject ICA on fMRI datasets

    Get PDF
    Spatial Independent Component Analysis (ICA) is an increasingly used data-driven method to analyze functional Magnetic Resonance Imaging (fMRI) data. To date, it has been used to extract sets of mutually correlated brain regions without prior information on the time course of these regions. Some of these sets of regions, interpreted as functional networks, have recently been used to provide markers of brain diseases and open the road to paradigm-free population comparisons. Such group studies raise the question of modeling subject variability within ICA: how can the patterns representative of a group be modeled and estimated via ICA for reliable inter-group comparisons? In this paper, we propose a hierarchical model for patterns in multi-subject fMRI datasets, akin to mixed-effect group models used in linear-model-based analysis. We introduce an estimation procedure, CanICA (Canonical ICA), based on i) probabilistic dimension reduction of the individual data, ii) canonical correlation analysis to identify a data subspace common to the group iii) ICA-based pattern extraction. In addition, we introduce a procedure based on cross-validation to quantify the stability of ICA patterns at the level of the group. We compare our method with state-of-the-art multi-subject fMRI ICA methods and show that the features extracted using our procedure are more reproducible at the group level on two datasets of 12 healthy controls: a resting-state and a functional localizer study

    Properties of the general NHDM. I. The orbit space

    Full text link
    We study the scalar sector of the general N-Higgs-doublet model via geometric constructions in the space of gauge orbits. We give a detailed description of the shape of the orbit space both for general N and, in more detail, for N=3. We also comment on remarkable analogies between NHDM and quantum information theory.Comment: 27 pages, 2 figure
    corecore